国家每一项宏观调控政策出台后,总要收集各种数据观察政策发布后的效果,这个收集的信息叫反馈。对收集到的信息如何处理呢?比如发现政策使得经济过热了,那么下一步就要修改政策,抑制经济过热。我们总要把这个信号进行相反处理,这个对收集到的信号进行相反处理的办法叫做负反馈。
维纳当年就认识到反馈信息过量的后果。这里还涉及到一个问题,就是控制过度,使得系统发生震荡。控制过度其实就是比例带过小。负反馈是不是过量,也跟比例带的设置有关系。这些个问题在后面的“稳定性”章节中具体探讨。
商业管理中也广泛应用负反馈原理。最近老板们总是强调执行力。执行力怎么体现?收集反馈信息。老板们往往要求我们命令要有回复,回复就是反馈。如果老板们还要判断命令是否合理,那就需要用负反馈原理。
我们走路的时候,不能闭着眼睛,因为眼睛是反馈环节。即使视力出现故障,也要有导盲犬、探路棍、盲道等措施弥补,所有这些措施都是提供反馈环节。大脑收集到反馈以后,一定会进行负反馈处理。为什么是负反馈呢?走路的时候,眼睛看路,他会告诉你个信号:偏左了,偏右了,然后让你脑子进行修正。信号发到你脑子里面后,你脑子里要对反馈信号与目标信号相减,然后进行修正。偏左了就向右点,偏右了就向左点。对这个相减的信号就是负反馈。如果相加就是正反馈了,那样走着走着你就掉进坑里去了。
但是,保证你不掉进坑里,那仅仅是给你怎样走路给了一个大致的方向。具体每一步走多大,向左向右偏多少,还要进行具体计算。前面说的都是定性的问题,步子走多大,向左右偏多少是定量的问题。光定性不定量还是没办法控制的。下面就介绍如何定量:
1-7 着作里程碑在漫长而又短暂的自动发展历史上,有无数科学家的辛勤努力,都值得我们景仰。其中,奠定了自动控制基础的三本着作最值得我们关注:
1、《信息论》,作者香浓(Claude Elwood Shannon)(国内普遍翻译为香农,我认为作为自动控制鼻祖之一人物,这个翻译不够浪漫,所以就擅自篡改为香浓哈)。1948年,香农在《贝尔系统技术杂志》第27卷上发表了一篇论文:《通讯的数学理论》,1949年又发表《噪声中的通讯》。这两篇文章奠定了《信息论》的基础。
2、《控制论》,作者维纳。前面介绍过了,这里忽略。
3、据说是《工程控制论》,作者钱学森。此处存疑。(中国人终于可以骄傲一下了)但是,不仅仅是中国人,好多国家都有一种民族自豪感。为了这个自豪感,我怀疑我们国家夸大了工程控制论的作用。声明:不光是我们国家有,苏俄当初把科学史修改得也是相当厉害的。控制论在维纳时期已经足够完备,不管在工程上还是其它方面,大的理论似乎没有什么需要添补的。改天买本《工程控制论》,恶补一下先。
那么你认为里程碑是什么呢?我似乎觉得,应该是PID调节方法的创立。
1-8 调节器控制理论这个大厦基本上建立起来了。其实我更关心的是PID控制方法的建立。说老实话,我总觉得维纳虽然伟大,可是总觉得他的理论不那么“精巧”,说白了谁都能明白。相比之下,我对PID理论的发明人更加佩服。说起来非常简单,不就是比例积分微分运算么,可具体要提出这种方法,还是需要一定的天才的。
PID是什么?
要弄清楚怎样定量之前,我们先要理解一个最基本的概念:调节器。调节器是干什么的?调节器就是人的大脑,就是一个调节系统的核心。任何一个控制系统,只要具备了带有PID的大脑或者说是控制方法,那它就是自动调节系统。如果没有带PID的控制方法呢?那可不一定不是自动调节系统,因为后来又涌现各种控制思想。比如时下研究风头最劲的模糊控制,以前还有神经元控制等等;后来又产生了具有自组织能力的调节系统,说白了也就是自动整定参数的能力;还有把模糊控制,或者神经元控制与PID结合在一起应用的综合控制等等。在后面咱们还会有介绍。咱们这个文章,只要不加以特殊说明,都是指的是传统的PID控制。可以这样说:凡是具备控制思想和调节方法的系统都叫自动调节系统。而放置最核心的调节方法的东西叫做调节器。
基本的调节器具有两个输入量:被调量和设定值。被调量就是反映被调节对象的实际波动的量值。比如水位温度压力等等;设定值顾名思义,是人们设定的值,也就是人们期望被调量需要达到的值。被调量肯定是经常变化的。而设定值可以是固定的,也可以是经常变化的,比如电厂的AGC系统,机组负荷的设定值就是个经常变化的量。
基本的调节器至少有一个模拟量输出。大脑根据情况运算之后要发布命令了,它发布一个精确的命令让执行机构去按照它的要求动作。在大脑和执行机构(手)之间还会有其他的环节,比如限幅、伺服放大器等等。有的限幅功能做在大脑里,有的伺服放大器做在执行机构里。
上面说的输入输出三个量是调节器最重要的量,其它还有许多辅助量。比如为了实现手自动切换,需要自动指令;为了安全,需要偏差报警等等。这些可以暂不考虑。为了思考的方便,咱们只要记住这三个量:设定值、被调量、输出指令。
事实上,为了描述方便,大家习惯上更精简为两个量:输入偏差和输出指令。输入偏差是被调量和设定值之间的差值,这就不用罗嗦了吧?
1-9 PID回到刚才的提问:什么是PID?
P就是比例,就是输入偏差乘以一个系数;I就是积分,就是对输入偏差进行积分运算;D就是微分,对输入偏差进行微分运算。
就这么简单。很多年后,我还始终认为:这个理论真美!
这个方法的发明人似乎是尼可尔斯(Nichols)。我手头没有更多资料,不能确定是不是尼可尔斯发明的。可是PID参数的整定方法确实是他做的。
其实这个方法已经被广大系统维护者所采用,浅白一点说,就是先把系统调为纯比例作用,然后增强比例作用让系统震荡,记录下比例作用和震荡周期,然后这个比例作用乘以0.6,积分作用适当延长。虽然本文的初衷是力图避免繁琐的计算公式,而用门外汉都能看懂的语言来叙述工程问题,可是对于最基本的公式还要涉及以下的,况且这个公式也很简单,感兴趣的看一下,不感兴趣的可以不看哈。公式表达如下:
Kp = 0.6*KmKd = Kp*π/4*ωKi = Kp*ω/πKp为比例控制参数Kd为微分控制参数Ki为积分控制参数Km为系统开始振荡时的比例值;ω为极坐标下振荡时的频率这个方法只是提供一个大致的思路,具体情况要复杂得多。比如一个水位调节系统,微分作用可以取消,积分作用根据情况再调节;还有的系统超出常人的理解,某些参数可以设置得非常大或者非常小。具体调节方法咱们后面会专门介绍。微分和积分对系统的影响状况后面也会专门分析。
科学家们都说科学当中存在着美。我的理解,那种美是力图用最简洁的定义或者公式,去描述宇宙万物的运行规律。比如牛顿的三大运动规律,和他的加速度和力的关系的公式:F=ma。表达极其简洁,涵盖范围却非常之广,所以它们都很美。同样的,我们的PID调节法也是这样的,叙述极简洁,可在调节系统中应用却极普遍。所以,不由得人不感叹它的美!不过说实话,PID控制法虽然精巧,可是并不玄奥。
现在,世界控制理论有了更大的发展,涌现出了各种各样控制方法。比如神经元控制、模糊控制等等,这些控制过程中,我只接触过模糊控制。用我自己最粗浅的理解,要是对控制系统要求更为精准严格的话,还是要用PID控制来配合的。并且,对于火电厂自动调节系统,我还没有发现有哪种系统用PID调节法不能实现的。如果你认为你所观察的某个系统,单纯用传统的PID调节方法不能解决问题,那存在两个可能:一是你的控制策略可能有问题,二是你的PID参数整定得不够好。
1-10 怎样投自动现在DCS功能很强大,想收集什么曲线就收集什么曲线,只要这个测点被引入DCS。最初可不是这样的。90年代初我用的是DDZ-II型调节器,后来是MZ-III组件型调节系统,再后来是KMM调节器,后来才有了集中控制系统,再后来有了DCS。前三种都不能显示曲线的。只能靠两只眼睛盯着指针或者数字,根据记忆去判断调节曲线,那个费劲啊!可是当时我并不觉得费劲,现在用惯了DCS以后,再拐回头去看数字,才觉得真费劲!还是老话说得好:由俭入奢易,由奢入俭难啊。
那么到底要观察哪些曲线呢?
说实话,开始我没有把这个事情当成个问题,觉得是水到渠成的事情。可后来我发现许多人都不善于收集曲线,才觉得有必要说一下。
我们要收集的曲线有:
1、设定值。作为比较判断依据;2、被调量波动曲线。
3、PID输出。
就这么简单。如果是串级调节系统,我们还要收集:
4、副调的被调量曲线;5、PID输出曲线。
为什么不收集副调的设定值了?因为主调的输出就是副调的设定啊。
在一个比较复杂的调节系统中,副调的被调量往往不只一个,那就有几个收集几个。
只有收集到了这些曲线后,你才能根据曲线的波动状况进行分析。
还有的调节系统更加复杂。投不好自动,总要去分析其原因,看看有什么干扰因素存在其中,你怀疑哪个因素干扰就把哪个曲线放进来。一般的DCS都支持8组曲线在一个屏幕中,如果放不下,你就考虑怎么精简吧。
不过现在咱们还没有到那个地步,复杂调节系统在后面介绍。
上一章简单介绍了自动调节的发展历程。搞自动的人,许多人对如何整定PID参数感到比较迷茫。这个东西其实一点都不高深,上过初中的人,只要受过严格训练,都可以成为整定参数的好手。什么?初中生理解积分微分的原理么?恩,初中生没有学过微积分,可是一旦你给他讲清楚微积分的物理意义,然后认真训练判断曲线的习惯和能力,完全可以掌握好PID的参数整定。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] 下一页
本文关键字:知识 电脑-单片机-自动控制,电子学习 - 基础知识 - 电脑-单片机-自动控制