如果在调频控制中,保持Er/1恒定,这时的机械特性Te=f(s)为一条直线,(4)基频以上保持Pd=常数的恒功率控制在基频以上变频调速时,由于电压U1=U1n不变,当1提高时,同步转速随之提高,最大转矩减小,机械特性上移,其基本形状相似,它属于弱磁恒功率调速。
综上所述,调频控制根据不同的控制方法,就可得到不同类型的机械特性。
基频以下恒压频比控制方式,在控制系统构成上是最简单的一种控制方式,调整因素少,不选择电动机,通用性良好。它适用于调整范围不大或风机,泵类等转矩随转速下降而减小的负载,节能效果显着。
基频以下恒Eg/1控制方式(即低速转矩提升)
的低速起动能力得到改善,从而比恒U1/1控制方式扩大了调速范围。它适用于调速范围不太大但要求带负载低速起动的应用场合,可用一台变频器控制多台电动机。
基频以下恒Er/1的控制方式,即矢量控制,它的控制特性比其他控制方式格外优越,其速度控制精度和瞬态响应指标达到或超过直流电机的水平。
它适用于要求从极低速到高速的宽广调速范围的应用场合,并适用于要求快速响应,频繁急加减速运转和四象限运转的用途。它主要用于取代直流电机调速传动的应用场合,但它的价格也较其他类型的贵。
基频以上恒功率控制方式,适用于负载随转速升高而减小的应用场合,例如机床主轴的传动,卷扬机等。
2根据负载特性,选取适当控制方式的变频器
我们这次改造的对象是机床的进给机构,工作台进给和左,右主轴进给均属于恒转矩负载,它的转矩速度特性如图6所示。原来的直流调速系统的调速范围D=50,要达到50:1的调速比,就必须选用带有矢量控制功能的工程型高性能变频器。
异步电机的矢量控制就是像他励直流电机控制一样,将电机定子的输入电流分解成产生磁通的电流分量和产生转矩的电流分量,分别进行独立而瞬时的控制,同时将二者合成后的定子电流供给电动机。因为以矢量控制决定变频器的输出频率,所以需要检测电动机的转速。这是转差型矢量控制,随着控制理论的发展和数字信号处理器(DSP)的应用,不用速度传感器只用异步电动机三根线控制%即无速度传感器矢量控制也实现了实用化,它的系统框图如图8所示。
目前,市场上出售的无速度传感器矢量控制变频器的调速范围可达到100:1.无速度传感器矢量控制是通过转矩电流的变化量的积分运算来推算电机的转速,势必会带来推算误差。如果要求进一步提高调速范围和精度,就要选用带速度传感器的矢量控制。目前,市场上出售的带速度传感器矢量控制的变频器的调速范围可达到1000:1.普通笼型电机上安装速度传感器不但增加了工艺难度,而且加大了技改成本。考虑到,无速度传感器矢量控制变频器的主要技术指标已能满足原机床的设计要求,所以我们选择了春日KVFZ4110型无速度传感器矢量控制变频器,它的几项主要技术指标如下:(1)调速范围无速度传感器矢量控制100:1(2)起动转矩1Hz时150%额定转矩(3)频率精度最高频率的01%三,变频器及其周边设备的容量计算
1变频器容量计算
在变频器容量计算前,要确定拖动负载的电动#33#应用交流机床电器2000No.5机容量。由于有原直流电机作依据,我们不必进行详细的转矩换算,只需选择与原直流电机容量相对应的笼型电机容量。由于工作台拖动电机容量均大于左,右主轴进给电机容量,所以变频器容量的计算以工作台电机为依据。
原工作台直流电机参数为:PN=10kW,nN= 1000r/min.查电机手册,与原直流电机数据对应的笼型电机数据为:型号Y160L-6,功率PN=11kW,转速nN=970r/min,额定电流IN=246A.变频器连续运行的场合,其额定输出电流IINV&11Imax式中IINV为变频器额定输出电流,Imax为电动机实际最大电流。
本文关键字:龙门铣床 变频器基础,变频技术 - 变频器基础
上一篇:高压变频器的研究与使用