电路的原始状态为:S1、S2关断,Cs1、Cs2上电压ucs1=ucs2=0。当开关S1开通后,Cd1上电压Ud/2通过S1、LF向负载供电,直流电源Ud通过开关S1、谐振电感Ls1、二极管Ds2,沿着虚线所示路径,对缓冲电容Cs1、Cs2充电。其等效电路如图3(a)所示,其中ucs1=ucs2为缓冲电容Cs1、Cs2上的电压,uL为Ls1上电压,RL为Ls1中的电阻,iL为流过Ls1的电流。在选定的电压和电流方向下,根据基尔霍夫定律(考虑Cs1=Cs2)可得
对上式求解可得
当S1关断时,由于Cs1、Cs2上电压ucs1=ucs2=Ud,开关S1上电压us=Ud-ucs1=0,所以S1是零电压关断。S1关断后,Cs1、Cs2上电压ucs1=ucs2=Ud通过滤波电感LF、负载ZL和直流分压电容Cdz,沿着图2(a)中点划线所示的路径放电,其等效电路如图3(b)所示。由基尔霍夫定律得
代入上式得
求解上式可得
7.2单相半桥逆变器广义软开关的工作过程
单相半桥逆变器无损关断缓冲电路的工作过程如图2(a)、(b)所示。在t<0时,S1饱和导通,ucs1=ucs2已充电到Ud。当S1关断时,通过S1的电流is逐渐下降,S1两端的电压us=Ud-ucs1。Cs1、Ds3、Cs2、Ds1支路通过直流电源与S1并联,相当于在S1上并联了一个已充电到ucs1=ucs2=Ud的缓冲电容Cs=Cs1+Cs2,此时Ds2反偏置,Ls1中电流iL=0,Cs1和Cs2通过LF、zL和Cd2放电,ucs1=ucs2逐渐下降到零,S1上的电压us=Ud-ucs1逐渐上升到Ud。假定逆变器按单极性工作,在S1再一次开通之前由于LF与zL中电感的作用,与S2并联的二极管D2续流,iD2=iZL。当S1开通时,is逐渐上升,负载电流IZL=is+iDZ,S1上电压受D2导通的牵制,仍保持Ud不变。当is上升到is=IZL时,iD2=0,D2反偏置,S1进入饱和导通状态,S1上电压us迅速下降到零,相当于一个跃变电压Ud突然加到Cs1、Ls1、Ds2、Cs2支路上,Ds2导通,Cs1、Cs2充电。半个谐振周期后,Cs1、Cs2上电压ucs1=ucs2=Ud,iL=0,Ds2反偏置。
从以上说明可知,S1工作在零电压关断状态,Cs1、Cs2上存储的能量,通过放电转送到负载或反馈回电源,故是无损关断缓冲电路。
电路中的LF,既是输出滤波电感,也是主开关S1、S2的开通缓冲电感,它可以使S1、S2零电流开通,存储在LF中的能量同样也转送到了负载或反馈回电源,故是一种无损开通缓冲电路。
7.3单相全桥与三相半桥逆变器的广义软开关
上述开关无损缓冲电路,也可以应用于单相全桥与三相半桥逆变器,如图4和图5所示。由图4和图5可知,它们都是由单相半桥逆变器组成的,图中Cd1和Cd2为共同直流分压电容,故工作原理与缓冲电容的充放电方式与半桥逆变器相同。这里必须指出的是,对于图4所示单相全桥逆变器,当采用图6(a)所示单极性SPWM脉冲控制时,直流分压电容Cd1和Cd2可以不用。例如主开关S1和S4在输出正半周,按图6(a)所示单极SPWM脉冲波形工作时,缓冲电容的充、放电路径如图4中点划线和虚线所示。逆变器的SPWM控制电路如图6(b)、(c)所示,其中图6(b)用于单相全桥逆变器,图6(c)用于三相半桥逆变器。