您当前的位置:五五电子网电子知识电工技术电源开关电源双极性开关三极管的选择 正文
开关电源双极性开关三极管的选择

开关电源双极性开关三极管的选择

点击数:7826 次   录入时间:03-04 12:04:03   整理:http://www.55dianzi.com   电源

所谓双极性,是指有两个PN结的普通开关三极管,在“彩显”中一般作为开关电源、行输出级和S校正电路的切换开关。三极管的开关状态和模拟放大状态的要求明显不同,对开关特性的描述也不是通常的fT、fa所能概括的。
        
        在开关电源中,是通过三极管开与关的时间比(即占空比)稳定输出电压的。在这里,三极管被当作开关使用,利用三极管的放大作用,通过极小的基极电流控制集电极电流。当集电极电流饱和时,认为开关已接通,而集电极电流截止时,则认为开关已断开。
        
        但是,三极管的开/关并非处于理想状态,导通时尚有其饱和压降VCES,断开时其IC≠0,而具有一定的ICEO。与理想开关相比,晶体管作为开关并非完全随基极控制电流同时进行开/关,其中存在一定的过程。
        
        为了研究三极管开/关此瞬间过程,首先对开/关的相对值作一规定,即当集电极电流达到其最大饱和电流90%时,认定它已接通,而集电极电流下降为I。的10%时,认为它已经断开。按此标准计量,三极管开/关过程所需时间作为衡量三极管的开关特性的比较标准。
        
        晶体管工作在开关状态和工作在线性放大状态有完全不同的要求。放大状态要求三极管的Ic应该完全受控于IB,且两者有稳定的线性关系,包括放大后的模拟波形和输入波形有完全相同的包络线。开关状态则要求三极管的基极电流达到Icm/hfe,其集电极电流立即上升到Icm,不应有过渡过程。但实际上这是不可能的,因为三极管是利用其放大特性工作于开关状态的。
        
        任何三极管其IC-IB特性均为与x轴有一夹角的斜线,该斜线的斜率(即夹角)永远不会垂直于X轴(即hfe不会无穷大),那么,Ir控制Ic由零增长到Icm也必然要符合斜线的规律才能达到,因而通/断都需一定的时间。
        
        除此而外,双极性晶体管基本放大原理也使开关动作需一定的时间。晶体管处于放大状态,常用最高截止频率(fT)和共基极放大状态最高频率(fa)表示晶体管可工作的频率范围。但是,fT、fa并不能确切的表示晶体管的开关特性,虽然fT、fa越高,三极管的开关特性也越好,但有的晶体管fr、fa相同,其开关特性却不尽相同。因此,三极管的开关特性常用开关的导通时间ton和关断时间toff来表示。
        
        导通时间是指,当基极驱动脉冲加入后,集电极电流由零达到饱和值90%所占用的时间。为了排除驱动电流的影响,假设加到基极一发射极之间的控制电流为理想的矩形波,见下图所示。在基极电流以垂直于X轴的特性上升时,集电极电流Ic并不随之升高,而是有一延迟时间t。,在此时间内lc呈缓慢曲线上升到Icm的10%。产生延迟时间的原因是:三极管在截止状态时,基区基本无自由电子,当控制电压突然升高时,欲使发射结达到VB≥+0.6V,输入电流必须不断地给发射结电容充电,以降低PN结的内部电场,然后再向基区发射电子,因而需经过一段时间(ta)。ta正比于发射结电容,反比于发射结的面积。开关管功率越大,必然发射结面积相应增大,欲要减小t。就越加困难。
        
        发射结的充电速度,不仅与输入驱动脉冲的内阻有关,而且与三极管的截止有关。如果三极管处于深度截止(即反向偏置过大),ta也越慢。当Ic达到10%的Icm时,在驱动脉冲的作用下,Ic随IB呈线性增长。
        
        其增长速度即从Ic由10%到90%曲线的斜率等于该管的hfe。
        
        前面已提到,此段曲线不可能是垂直线,因而形成上升时间tr。很明显,三极管的hfe越大,Tr越短。经过延迟时间与上升时间之后,三极管Ic=90%的Icm才认为其已经导通,开关闭合,因此导通时间为ta+tr。当驱动脉冲回落至零时,开关的关断同样需要一定的时间。
        
        当开关管饱和时,基区必然积累较多的电荷,集电结形成空穴积累,饱和过程中必然出现IB>IC/hFE,这是使三极管进入饱和区的可靠保证。但如果IB远大于IC/hFE,即处于过饱和状态(或称深度饱和状态),基区存储电荷越多,集电结空穴积累越严重,当驱动脉冲截止时,存储电荷的消散时间也越长,因而在驱动脉冲截止后,将Ic由90%降低为10%的时间称为存储时间ts。从三极管结构来说,基区和集电区越薄,存储电荷量就越小,tr也就越小。经过ts之后,三极管随存储时间基区正偏逐渐消失,Ic随之下降,形成下降时间tf。
        
        存储时间ta+tf,即构成开关管关断时间。导通时间与关断时间首先取决于三极管的结构和工艺,其次才是设计合理的开关驱动电路。
        
        导通时间和截止时间构成开关管的导通损耗和截止损耗。因为在此时间内,三极管处于放大区,其管压降必然增大,功耗随之增加。与此相同的原理,二极管也有导通/截止时间,不过,在开关电源中,影响最大的是二极管的反向恢复时间。当二极管导通后,外加脉冲降为零,二极管并不会立即截止,恢复到截止需一定时间(与上述相同的原因)。当工作频率升高时,正向脉冲过后二极管不能及时恢复,其单向导电性则使电路处于短路状态。二极管的恢复时间除取决于PN结、N电容以外,还与工艺结构有关,因此有普通工频整流二极管、快恢复二极管、肖特基二极管之分。
        
        普通工频整流二极管正向压降范围为1~2V,随耐压升高有不同程度的增大。目前其最高反压可作到5kV以上,最大整流电流达到kA以上。所谓工频,不单指频率,还指其波形是正弦波,其反向恢复时间比较慢,因此,此类二极管不适直用在方波逆变器中作整流和阻尼。在开关电源中,也只能用于交流电源整流。
        
        快恢复二极管,指反向恢复时间在50~200ns范围内,可用于100kHz。以下的开关脉冲的整流、箝位及开关管的阻尼电路等。快恢复二极管的参数与生产工艺有关,反向恢复时间最快的属外延法生产的二极管.一般手册中所列最高反压为其击穿电压的80%,选用时需注意留有适当的余量。
        
        肖特基二极管SBD为多数载流子单向导电器件,其开关时间极短,一般为50~100ns。其最大特点是:
        
        正向压降理论上为0.3~0.5V,额定电流不超出0.6~0.8V,比PN结二极管的最大正向压降1~1.2V低近一倍,因此作低压大电流脉冲整流十分有利。但肖特基二极管反向电压较低,大多为40V以下,只有极少数产品能达到100V。一股用于低压输出开关电源中和大电流低电压的脉冲整流电路中。


本文关键字:开关电源  三极管  电源电工技术 - 电源