一、应用背景
本文讲述了DVP-EH2型PLC在我公司的双工位深孔钻机床上的应用。双工位深孔钻机床为我公司开发生产的重点产品,机床主要用于汽车刹车泵缸体的钻孔加工,在市场上具有很大的应用潜力。
机床加工的基本原理是:枪钻钻头动力头平置于机床工作台,加工件安放于竖直的滑台上的工件夹具内。滑台沿枪钻钻头旋转的垂直线上下运行。加工时,钻头高速旋转,滑台带动工件往下运行,对产品进行钻孔加工,加工尺寸到位后,滑台再往上运行,退出工件,关闭动力头。
传统的机床采用液压油缸驱动。当液压油缸行程到位后,利用行程开关控制液压电磁阀动作,使油缸返回。液压驱动的最大问题是加工孔深精度很难控制。运行速度调节也不是很方便。
机床采用伺服电机控制丝杆滑台上下运行定位,滑台往下运行时,对产品进行钻孔加工,加工完成后,滑台再住上运行,退出。与传统的液压油缸驱动相比较,由于利用伺服电机定位控制,可以很方便的进行加工速度设置,高精确地达到钻孔深度的控制。
双工位深孔钻机床是两个工位同时加工,互不干涉。一个机床操作员控制,可以同时进行两件工件的加工。是提高加工效益,减少投资的不二之举。
机床控制方案可以选用简易型数控控制系统(CNC)。当前市面上也有很多两轴的数控产品。数控系统有着标准的G代码编程,也能够很方便的进行伺服的定位控制。但是须要完成两轴相互独立,互不干扰的定位时,CNC在编程时遇到了制约。CNC的两轴或多轴G代码在编程时,不能做到同时执行两段独立的定位指令。当然,也可以采用两台单轴的CNC控制系统。但是,这样的控制过于冗杂,成本也过高,应用价值不高。
鉴于以上原因 ,实现此机床控制要求可以选用PLC进行控制。机床的定位动作并不复杂,只需要正向加工定位、反向退出定位两段位置控制指令。很多型式的PLC都带有高速脉冲输出功能,具有很方便的相对定位,绝对定位指令。不需要另加扩展模块,能够很方便的实现机床的运动控制。
二、控制概要
1、机床需要两轴脉冲输出,以分别控制两个工位的丝杆滑台运行。滑台的定位速度不小于6m/min。定位精度小于0.01mm。在电气控制设计上,一般都设计为0.001mm/P,即0.001mm每脉冲当量。 这样,方便进行运算,电子齿轮比也容易计算。机械制造上采用精密丝杆传动(双螺母滚珠丝杆),也比较容易就能达到0.01的定位精度。
2、 机床人机对话采用控制面板的开关按钮与触摸屏接合。工件的加工速度,加工尺寸在触摸屏上利用参数的形式进行设置。
触摸屏与PLC组态后,可以对PLC的一些关键内部数据时行监控,包括实时显示工件坐标、动力头电机电流。显示加工状态、关键的PLC内部数据或一些故障码、异常信号,方便进行机床的状态分析、故障疹断。
触摸屏与PLC可以很方便的实现通信。两者组态时,只要设置好两者之间的通信协议,触摸屏即可以读写PLC的D、M数据了。
3、枪钻的加工因为工件的材质不同、加工孔径的大小不一,枪钻钻头的转速也要求能够很方便的进行调节。因此,机床的动力头转速采用变频器进行调速控制。
机床控制系统,可以监视变频器的相应状态,包括输出频率,输出电压,负载电流。因此,可以将PLC与变频器进行RS485通信读取读据。同时,PLC对变频器的速度、运行、停机等可以通过RS485通信进行控制,方便变频器的控制接线。
4、机床加工还须要一定的外部辅助功能。如加工过程中的冷却液,工件装夹,防护门开关等等。
5、机床具有手动控制和自动控制两种工作方式。手动控制主要用于机床的调试和首件产品的试制,可以分别对辅助功能进行开关,手动控制工件滑台的上下运行。自动控制为自动进行一个工件的加工周期,人工装夹好工件后,操作人员按下起动按钮,机床即进行工件的钻孔加工,钻孔完成后,即行自动退出工件,加工过程中,自动注入冷却液,开关防护门等相关辅助动作。加工完成后,自动工件松开。完成一个工件的加工过程。
三、PLC在专用机床上的控制实现
根据机床控制要求,电气控制系统以PLC为控制核心、以触摸屏与控制面板按钮为人机对话界面,控制机床的各项辅助功能输出、控制双轴伺服定位、变频器调速。其中,PLC与触摸屏的通信为RS232通信;PLC与变频器的通信采用RS485;PLC对伺服驱动的定位控制采用脉冲+方向形式的脉冲输出方式。机床总体控制框架如下图所示:
机床电气控制总框图
1、PLC 在机床上的定位控制
PLC的脉冲输出最高频率直接影响运动定位控制的速度和精度,是一项非常关键的技术指标。一般PLC都会带两路脉冲输出或四路脉冲输出。并且脉冲输出频率并不低,甚至比一般的CNC数控还要高,如台达的DVP-EH2系统的PLC最高输出达200KHz,有些甚至更高,如Omron公司的CP1H-Y系列的PLC还达到了1MHz。
脉冲定位速度为:
V=Fmax×δ×60 (式1)
其中,V为速度,单位:m/min(米/分钟);Fmax为最高脉冲频率,单位:Hz(赫兹);δ为脉冲当量,单位:mm/P 。
台达DVP-EH2型PLC共有四路高速脉冲输出,其中两组为AB相脉冲,两点为单脉冲输出端。四路脉冲输出端口分别为:CH0(Y0,Y1),CH1(Y2,Y3),CH2(Y4),CH3(Y6),输出频率都达到200KHz。如果采用0.001mm/P脉冲当量进行控制,那么,根据式1,PLC的定位速度最快为:
200000×0.001×60=12000mm/min=12m/min
即定位的最高速度为12米每分钟。完全可以达到机床的控制要求。
现在很多的微型机,或小型机都有内置高速脉冲输出功能。可以运用脉冲定位指令实现相对定位、绝对定位。台达PLC的相对定位指令[D]DRVI或绝对定位指令[D]DRVA。(指令前缀D为双字控制指令,最高定位区间可以达到232,即定位范围为-2147483648~+2147483647)。在机床控制中,当电气精度做到0.001mm时,则机床的定位范围在-2147483.648mm~+214748.367mm之间,完全可以满足机床的控制要求。
机床在定位控制中,需要用到单步方式、连续方式、自动加工定位。单步方式主要用于调试机床时的精确定位,即按动一次正向定位或反向定位的控制按钮,机床即进给一定量值(PLC发出指令数量的脉冲值)。单步方式一般采用脉冲相对定位指令[D]DRVI,脉冲定位数量可以在触摸屏人机界面中设置。相对定位指令格式如下:
S1:脉冲输出数目;(定位量)
S2:脉冲输出频率;(定位速度)
D1:脉冲输出装置;(脉冲输出通道CH0,或CH1)
D2:定位方向输出装置;(脉冲正向定位/反向定位)
其中,EH2机型的脉冲输出通道D1可以指定为Y0(CH0)或Y2(CH1);定位方向输出D2可以指定其他任何输出端点,D2根据脉冲定位数量的正值/负值自动决定为ON/OFF。当S1为负值时,D2=OFF,当S1为正值时,D2=ON。
对于操作数S1,和S2 可以指定为数据寄存器D。通过触摸屏对寄存器D的访问,进行操作数的设定。
实现程序如下所示:
程序中,M17为触摸屏界面的触控按钮,X17为操作面板“滑台升”按钮,特殊辅助继电器M1029为CH0脉冲输出完毕标志,当按下X17(M17)时,定位脉冲输出端子即刻输出由D120指定的定位脉冲数,并因M21的自锁而持续输出,当定位脉冲数值完成时,脉冲输出完毕标志置ON,指令条件解除,须得由下一次按钮按下时再次起动。
机床在自动加工时,采用绝对定位指令[D]DRVA。使用[D]DRVA指令之前,需要先进行原点设定,也即在绝对定位指令前,须要将现在的脉冲输出当前值做出设定,否则绝对定位指令不能执行。原点设定可以在PLC上电的初始化中进行设置。一般使用PLC的启动正向脉冲对D1336进行数据传送。特殊数据寄存器D1336为CH0脉冲的现在值。
原点设定的实现程序如下所示:
当机床在定位时,PLC实时的读取当前的脉冲数,随时将D1336内的数值读出到D200进行保存。在机床再次起动时,再将D200内保存的数值送入到D1336中,这样,就可以在机床关机时,能保持机床的当前坐标。
绝对定位指令实现程序如下所示:
本文关键字:暂无联系方式机床,应用领域 - 机床
上一篇:PLC机床控制系统更具经济意义