触发位置
具有预触发或后触发延迟能力的示波器必须具有某种方法来控制延迟时间的大小,这可以用触发位置控制机构来完成。这个控制机构可以舍不得触发位置在屏幕上或者在采集记录中移动。
在有些示波器中,触发位置只能设置为几个预先规定的数值,例如在采集的信号记录的开关、中间和结尾。但如示波器具有很宽的触发位置控制范围,使用起来将会是很方便的。因此PM3394A示波器就允许用户将触发时刻设置在整个采集记录中的任何位置,并且触发位置还是连续可变的。
毛刺捕捉
图29所示的是一个带有快速的毛刺或尖峰的失真正弦波。产生这种波形的原因可能是由于其它电路的干扰,也可能是由于连线离被测系统过近的缘故。这些毛刺常常会引起系统发生误动作。那么,我们能用示波器来发现这些毛刺吗?
如果我们使用模拟示波器来观察,只有当毛刺信号是重复性的并且和主信号(即这个例子中的正弦波)同步时,我们才能看到毛刺信号。或者,如果我们的运气好,出现了很多的毛刺的朦胧形象。
由于毛刺源于其它的电路系统,所以这些毛刺通常只是偶尔发生,并且和主信号不同步。
那么,如果DSO,我们能发能这些毛刺吗?未必,首先我们必须确保示波器已准备好去捕捉这些快速毛刺。
我们知道,DSO在特定时刻对输入信号进行采样,如本章开头所述,采样点之间的时间间隔取决于时基设置。如果毛刺的宽度比示波器的时间分辨率还要小,那么能否捕捉到毛刺就看运气如何了。为了能够捕捉到毛,我们的办法就是峰值检测或毛刺捕捉。
彩峰值检测的方法时,示波器将对信号波形的幅度连续地进行监测,并由正负峰值检测器将信号的峰值幅度暂地存贮起来。当示波器要显示采样点的时候,示波器就将正或负峰值检测器保存的峰值进行数字化,并将该峰值检测器清零。这样在示波器上就用检测到的信号的正,负峰值代替了原来的采样点数值。因此,峰值检测的方法能够帮助我们发现由于使用的采样速率过低而丢失的信号或者由于假象而引起失真的信号。峰值检测的方法对于捕捉调制信号,例如图30所示的AM波形,也是非常有用的。为了显示这类信号,必须将示波器的时基设置得和调制信号在频率相配合,而在这种信号中,调制信号的频率通常在音频范围但载波频率通常为455KHz或者更高。在这种情况下,不使用行刺捕捉功能,就不能正确地采集信号,而使用了毛刺捕捉功能就可以看到类似模拟示波器所显示的波形。
示波器上的峰值检测功能是通过硬件(模拟)峰值检测器的方法或者快速采样的方法来实现的,模拟峰值检测器是一个专门的硬件电路,它以电容上电压的形式存贮信号的峰值,这种缺点是速度比较慢,它通常只能存贮宽度大于几个微秒且具有相当幅度的毛刺。
数字式峰值检测器围绕ADC而构成,这时ADC将以可能的最高采样速率连续对信号进行采样,然后将峰值存贮在一个专用的存储器中,当要显示采样点的值时,贮存的峰值就作为该时刻的采样值来使用。数字式峰值检测器的优点是其速度和数字化过程的速度一样快,本书中用作示例的示波器PM3394A就能够在很低的时基速率设置下,如1秒/格,以正确的幅度采集到窄至5ns的毛刺。
滚动模式
至此,我们已经知道DSO能用和模拟示波器类似的方式显示波形,从触发事件开始,标波器采集信号的采样点,并将其存于采集在储器中的连续位置中。一旦新的数据已将存储器的最后一个单元填满以后,采集过程既告结束,示波器就将采集存储器中的波形数据复制到显示存储器中去在此时期示波器不再采集新的数据,就像模拟示波器在时基复位期间不能显示波形扫迹一样。
对于低频应用的场合,信号的变化周期可达分钟量级而远不只是微秒的量级,这时DSO可以应用于一种全连续的显示方式:滚动模式。而这种背后的极样点显示于屏幕的右面,屏幕上已有的波形则向左滚动(见图31)。老的采样点一旦移动到屏幕的左面即行消失。这样一来示波器屏幕上显示的波形总是反映出最新信号对时间变化的情况。
由于有了这种滚动模式,我们就可以用示波器来代替图表记录仪来显示慢变化的现象,诸如化学过程、电池的充放电周期或温度对系统性能的影响等。
显示放大
在模拟示波器中,可以将进基放大10倍,以便详细观察信事情的细节。在DSO中显示的波形可以按大小不同的步进值放大,通常进基放大按2的幂次倍数放大,即按x2,x4,x8,x16,等倍数放大。
一旦波形已经采集并存入存储器,例如单次波形采集的情况,使用垂直放大功能代替提高垂直灵敏度来放大波形也是很方便的。
特殊的触发方式
DSO的存贮功能使它成为捕捉十分罕见、甚至于只发生一次的信号,例如单次事件或者系统闭锁等情况的极为有用的工具。为捕捉这些信号就要求示波器具有各种各样的触发方式去探测这些特殊的条件,以便启动波形采集。这实惠这一目的,只有边缘触发方式往往是不够的,为此又开发了若干附加的触动发能力。我们在此讨论其中的几种。
—图形触发
在逻辑硬件电路各,信号是由许多并行的线来传送的,整个硬件的瞬时状态则是由在给定时刻时这些线上的状态来表示的。为了识别硬件状态,就需要有一种仪器来检测这些线的状态。使用图形触发功能可以监视多条,例如4条线的状态,当探测到用户规定的图形(例如HHLH)或字时,示波器就被触发。由于图形触妇的设计是和数字逻辑配合使用的,因此,可以用来监视各条线的状态是为高(H)、低(L)、或者任意(X)。
—状态触发
逻辑硬件通常是围绕着一个中央时钟系统来构成的。其中的所有硬件都在时钟系统的指令之下来存贮其输入信号,因此我们的测试仪器也应依据同样的原则工作。当使用状态触发时。输入信号怕自理方法和图形触发时一样,只不过一在要把其中的一个输入信号当作时钟信号。如果示波器在时钟上升沿或下降沿时存贮的其余三条线的输入字和用户规定的触发定一致,则示波器新触发。
—毛刺触发
使用毛刺触发时,能引起系统误动作的窄脉冲,如毛刺、类峰等可以引起示波器触发。
如果一个系统是设计在DC到某一频率信号下工作的,那么由于线路走线可能会使系统引入比此范围更高的频率信号,例如来自其它线路的干扰或吸收大功率的瞬变信号等,可以把示波器设置为当被测脉冲的宽度小于允许的最高频率信号之周期的一半时触发。国为我们可以认为,在正常工作的情况下,这样窄的脉冲是不会发生的。
毛刺触发的另一个应用场合是逻辑硬件,这时硬件电路的逻辑状态都是和系统时钟同步变化的。结果,这种硬件电路中的脉冲宽度都应为系统时钟周期的整倍数。在这种系统中,故障的发生常常和脉冲宽度异常有关,为了探测故障,我们现在可以把示波器的角发条件设置为在脉冲宽小于一个时钟周期时触发。
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] 下一页