您当前的位置:五五电子网电子知识单元电路锁相环电路基于FPGA的全数字锁相环路的设计 正文
基于FPGA的全数字锁相环路的设计

基于FPGA的全数字锁相环路的设计

点击数:7726 次   录入时间:03-04 11:38:45   整理:http://www.55dianzi.com   锁相环电路

  数字 锁相环 路已在数字通信、无线电电子学及电力系统自动化等领域中得到了极为广泛的应用。传统的全数字锁相环路(DPLL)是由中、小规模TTL集成电路构成。这类DPLL工作频率低,可靠性较差。随着集成电路技术的发展,不仅能够制成频率较高的单片集成锁相环路,而且可以把整个系统集成到一个芯片上去,实现所谓片上系统SOC(System on a Chip)。因此,可以把全数字锁相环路作为一个功能模块嵌入SOC,构成片内锁相环。下面介绍采用 VHDL 技术设计DPLL的一种方案。

  1 工作原理

  全数字锁相环路的结构框图如图1所示。

全数字锁相环路的结构框图

  其中 数字鉴相器 由异或门构成,数字环路 滤波器 由变模可逆计数器构成,数控振荡器由加/减脉冲控制器和除N计数器组成。可逆计数器和加/减脉冲控制器的时钟频率分别为Mf0和2Nf0。这里f0是环路的中心频率,一般情况下M和N为2的整数幂。时钟2Nf0经除H(=M/2N)计数器得到。限时的相应波形如图2所示。

限时的相应波形

  当环路琐定时,u1和u2正交,鉴相器的输出信号ud为50%占空比的方波,此时定义相位误差为零。在这种情况下,可逆计数器"加"与"减"的周期相同,只要可逆计数器的k值足够大(k>M/4),其输出端就不会产生进位或借位脉冲。这时,加/减脉冲控制器只对其时钟2Nf0进行二分频,使u1和u2的相位保持正交。在环路未锁定的情况下,若ud=0时,它使可逆计数器向上加计数,并导致进位脉冲产生,进位脉冲作用到加/减脉冲控制器的"加"控制端i,该控制器便在二分频过程中加入半个时钟周期。反之,若ud=1,可逆计数器减计数,并将发出借位脉冲到加/减脉冲控制器的"减"输入端d,于是,该控制器便在二分频的过程中减去半个周期。这个过程是连续发生的。加/减脉冲控制器的输出经过除N计数器后,使得本地估算信号u2的相位受到调整控制,最终达到锁定状态。

  2 环路部件的设计

  这里重点介绍数字环路滤波器的设计。数字环路滤波器是由变模可逆计数器构成。在ud的控制下,当j=0时,对时钟Mf0进行"加"计数;当j=1时,进行"减"计数。可逆计数器的计数容量(模数k)可以利用A、B、C、D四位进行预置,从而方便地改变模数。其预置模数的范围为,当D、C、B、A在0001~1111取值时,相应模数的变化范围是23~217。可见,可逆计数器的长度能够根据模数k值的大小来实现数字编程控制。取D、C、B、A为0001时,K=23,计数器长度只有三级,因而可以扩大捕捉带,缩短锁定时间。在D、C、B、A取1111时,K=217,计数器长度变为十七级,这时捕捉带缩小,缩定时间延长。变模可逆计数器的VHDL设计程序如下:

程序

程序

  根据对其他环路部件的功能分析,也可以设计出相应的VHDL程序。



www.55dianzi.com

  3 设计实现

  本设计中全数字 锁相环 路采用XILINX公司的Foundation 3.1版本进行设计,并用Spartan2系列的 FPGA 予以实现。下面分别给出变模可逆计数器和加/减脉冲控制器的仿真波形如图3、图4所示。

变模可逆计数器和加脉冲控制器的仿真波形

变模可逆计数器和减脉冲控制器的仿真波形

  从图3中可见,当j=0时,可逆计数器做加计数,若取模k=24,则当计数值cq=0000FH时,计数器产生进位脉冲(r1=1);当j=1后,在下一个时钟的上升沿到来时,可逆计数器开始做减计数,当cq=00000H时,产生借位脉冲(r2=1)。改变模k便可延长或缩短可逆计数器产生进位脉冲和借位脉冲的时间。同时,由图1可知,可逆计数的加/减计数信号j是由鉴相器的输出信号ud控制的,而其进位脉冲r1和借位脉冲r2又分别与加/减脉冲控制器的i和d相接,用于控制其输出脉冲的序列。由图4可知,在无进位和借位脉冲时,加/减脉冲控制器对2Nf0时钟进行二分频。一旦可逆计数器有进位脉冲或借位脉冲输出时,作用到加/减脉冲控制器i或d端,便使其输出脉冲序列发生了变化。当可逆计数器输出一个进位脉冲时,使i=1,则在i的下降沿到来之后,加/减脉冲控制器的输出端q插入一个脉冲,即在其输出序列中加入了半个周期;反之,当可逆计数器输出一个借位脉冲时,使d=1,则在d的下降沿到来之后,q端删除一个脉冲,即在加/减脉冲控制器的输出序列中删去了半个周期。由以上对图3、4仿真波形的分析可知,变模可逆计数器和加/减脉冲控制器的逻辑功能符合设计要求。把全数字锁相环路的各部件连接起来进行系统仿真,可得其仿真波形如图5和图6所示。

仿真波形

仿真波形

  其中图5是取k=25时的系统仿真波形,由图中可见,u1和u2达到锁定状态时的仿真时间是175μs。图6是取k=28时的系统仿真波形,在这种情况下,u1和u2达到锁定状态时的仿真时间是1.04ms。显然,模k愈大,环路进入锁定状态的时间愈长。

  值得指出的是,在环路锁定状态下,由于可逆计数器的连续计数,或在噪声的

干扰下,会产生进位和借位脉冲。如果k值取得太小,则可逆计数器因频繁地循环计数而产生进位或借位脉冲,这就导致了在环路的输出端出现相位抖动。为了减少这种相位抖动,k值必须取大于M/4。

  由以上分析可知,模k的取值要适当。k取得大,对抑制噪声、减少相位抖动有利,但同时又加大了环路进入锁定状态的时间。反之,k取得小,可以加速环路的锁定,而对噪声的抑制能力却随之降低。

  采用 VHDL 设计全数字锁相环路,具有设计灵活、修改方便和易于实现的优点,并能够制成嵌入式片内锁相环。该类数字锁相环路中计数器的模数可以随意修改。这样,就能够根据不同情况最大限度地、灵活地设计环路。




本文关键字:锁相环  锁相环电路单元电路 - 锁相环电路