您当前的位置:五五电子网电子知识电子知识资料机器人-智能车一种新型的可穿戴型下肢助力机器人感知系统设计 正文
一种新型的可穿戴型下肢助力机器人感知系统设计

一种新型的可穿戴型下肢助力机器人感知系统设计

点击数:7892 次   录入时间:03-04 11:59:12   整理:http://www.55dianzi.com   机器人-智能车

    软件设计分为下位机(微处理器)的软件设计和上位机(PC)的软件设计。每个传感器作为一个节点通过CAN总线互联,当接收到上位机的命令后,首先进行命令判断,根据不同的命令作出相应的数据处理。上位机(PC)主要包括清零点、力信息(数字量)、回传力信息、查询力信息、屏蔽报警等命令。下位机的软件设计主要由数据采集程序(A/D转换)、数据处理程序以及CAN总线通讯程序三大部分组成。启动CAN中断以前,在主程序中进行一次数据采集,得到传感器系统的初始值,这其中包括3个A/D转换通道;延时,完成通道的初始化;数据采集是在CAN中断程序中完成的,每一次中断完成1组三维力信息数据的采集以及相应的A/D转换;同时读取转换结果,对转换结果进行数字处理,数字处理主要由数字滤波与力信息解耦两大部分组成,数字滤波主要采用窗口移动法与数据平均值法相结合;数据经过解耦处理后,通过SendData()函数,将数据发送到CAN总线上,上位机通过ID号识别接受下位机数据,具体流程见图7。

下位机程序设计流程

    4 传感器标定实验

    E型膜片元件结构的复杂性使得产品特性的一致性比一维传感器更难保证,应变计的贴片工艺很难保证绝对理想情况,这些因素决定传感器的实际静态特性和理论计算值之间存在一定的误差,因此传感器的静态特性一般采用标定实验的方法获取,其标定准确度将直接影响传感器使用时的测量准确度。所谓传感器的标定,就是建立传感器的三路输出值与作用在传感器坐标系原点上的三维力之间的数量关系。标定实验过程包括静态标定和实时测量验证两部分。为了减少随机误差的影响,采用一种具有一定冗余力向量的最小二乘标定方法。设F是加载力矩阵,V为传感器的输出矩阵(数字量),C为标定矩阵,E为误差矩阵,则

    F=CV+E (6)

    式中:F,V为已知量;E可以设定。于是,标定矩阵的求解可以转化为求解标定矩阵C,使式(6)在最小二乘法意义下最优。在微型指力传感器标定过程中,对施加在传感器上X,Y方向的载荷和敏感桥路之间的关系进行测量,其测量值(数字量)与所加砝码数值的对应关系如图8所示(XLable表示传感器标定所加载荷,Ylable表示传感器输出数字量)。

测量值

    从图8可以看出,传感器X方向加力时,所受载荷和传感器敏感桥路输出之间的映射关系可以基本认为是线性的,Y方向的最大耦合不超过2.5%。利用最小二乘法得到传感器的两组静态标定矩阵为由此可以计算出传感器的I类误差为2%,II类误差为2.5%。利刚C1,C2两组标定矩阵对传感器进行实时测量检验,结果显示I类最大误差不超过2%,II类误差不超过2.5%。通过该标定系统得到的静态标定矩阵和理论设计值比较接近,说明标定系统和标定方案是切实可行的。

    5 结 论

    本文针对一种新型的人体辅助型康复机器人,设计了一套基于CAN总线的下肢运动信息感知系统,见图9。经分析可穿戴型助力机器人所需要的控制信息可确定传感器的种类、数量和安装位置;重点介绍腿部和脚底力传感器的弹性体设计,测量电路和上下位机软件;对传感器进行标定实验并对数据进行分析,给出传感器的一般性能指标,结果说明本研究中的设计理论和设计过程是正确的,基本可以满足可穿戴型下肢助力机器人控制系统的需要。未来的工作主要集中在以下几点:①继续完善传感器的弹性体结构,在满足传感器性能指标的基础上进一步减小传感器弹性体体积和精确确定应变计的贴片位置;②完善传感器的测量电路设计,增加滤波电路,改进放大电路;③改进传感器的标定系统,把标定误差降至最低。

可穿戴型下肢助力机器人感知系统


上一页  [1] [2] 


本文关键字:机器人  机器人-智能车电子知识资料 - 机器人-智能车