您当前的位置:五五电子网电子知识电子知识资料科研成果输入电压调节于LLC-SRC效率最佳化设计 正文
输入电压调节于LLC-SRC效率最佳化设计

输入电压调节于LLC-SRC效率最佳化设计

点击数:7989 次   录入时间:03-04 11:56:25   整理:http://www.55dianzi.com   科研成果

    在能源危机发生之后,人们对于能源转换效率及利用效能日益重视。因此,各国也纷纷制定许多能源规范。从早期的满载效率,到现今的四点平均效率。以桌上型电脑之电源转换器为例,更有80Plus金、银、铜牌等(20%、50%、100%负载)效率规范。然而,在诸多认证规范中,最困扰研发人员的往往是轻载与半载效率。本文主要介绍半桥谐振式转换器之基本操作原理,并说明如何透过调节功因修正级(PFC)输出电压以提高LLC-SRC半桥谐振式转换器之轻载及半载效率。

    以目前高效率电源转换器之应用为例,传统的硬切换技术(Hard-Switching)已无法满足80Plus金牌等级以上之要求。各大电源供应器厂商纷纷投入软切换技术(SOFt-Switching)之研制。其中更以LLC-SRC半桥串联谐振转换器(Half-Bridge Series Resonant Converter)最为受到青睐。主要塬因在于其容易达成零电压切换(减少切换损失,提高转换效率),降低电磁干扰(EMI)等。

      基于输入电压调节于LLC-SRC应用之效率最佳化

      LLC塬理分析

      LLC-SRC半桥串联谐振转换器的结构(如图1示),可分为叁个部份。方波产生器(Square wave generator)、谐振网路(Resonant network)与输出整流滤波(Rectifier network)。

      A方波产生器藉由各近50%的导通週期(Duty cycle)驱动功率开关(MosFET)Q1和Q2以产生方波电压并藉由控制开关频率来达成输出电压调节。

      B谐振网路部份主要由谐振电容(Cr),谐振电感(Lr)及激磁电感(Lm)所组成。此串联谐振网路可将高次谐波电流滤除,并使电流角度落后电压而达成零电压切换。

      C利用全波桥式整流或变压器中央抽头整流型式与输出滤波电容,将交流电流转换为直流电压输出。其交流等效电路如下:

      C利用全波桥式整流或变压器中央抽头整流型式与输出滤波电容

      其中:

      当输入电压变化或输出负载变化时,为保持输出电压之稳定,必须藉由调整谐振网路之电压增益(Gain)来达成。其中增益(M)可被定义为:

      44

      其中:

      464

      由此可得知此谐振网路中具有两个谐振频率,一个由Lr及Cr所组成,而另一个由Lp及Cr所组成。且其增益随谐振频率改变而不受负载变化影响。若操作频率(w)=谐振频率(w0)时,可得:

      55

      因此,当操作频率接近谐振频率时,整个谐振网路的阻抗几乎会等于输出阻抗。此处较类似传统的串联谐振转换器。下图为LLC串连谐振转换器之电压增益曲线。

      LLC串连谐振转换器之电压增益曲线

      此处与传统串联谐振不同的是LLC串联谐振转换器具有两个谐振点,并且允许转换器工作于两个谐振点间。

      如图4,当操作频率小于谐振频率时(fs《f0),一次侧切换晶体(MosFET)与二次侧整流二极体(Rectifier)皆操作于软切换(Soft-Switching)状态,在此状态下,二次侧整流二极体无逆向回復时间(trr)之损耗。但也因其电流呈现非连续导通的现象,故其表现在输出滤波电容上的涟波电流(Ripple Current)较大,所以比较适用于输出高电压小电流之应用。

      当操作频率大于谐振频率时(fs》f0),其特性较类似于传统的串联谐振转换器(Series Resonant Converter)。在fs越接近f0时,其一次侧之循环电流越小(Circulating Current),因此可以依此特性适当地减少一次侧之循环电流,以达到效率最佳化。二次侧输出整流二极体电流较连续,其表现在滤波电容上的涟波电流相对较小。故此操作区间较适用于输出低电压大电流之应用。

模拟验证

      以12V/25A 300W输出谐振转换器为例,选择Lr=110uH Cr=22nF m=5 输入390VDC,操作于fs《f0区间:

      另选择m=19 操作于fs》f0区间:

      由两者增益曲线比较可知,当m越大时会越接近传统串联谐振之特性。增益-频率表现变化较小,因此需要较高的操作频率以维持轻载输出电压的稳定。

      



www.55dianzi.com

      需要较高的操作频率以维持轻载输出电压的稳定

      由图7与图8可知,当转换器工作在fs《f0状态下,负载变化时,操作频率变化範围较窄。可是因其关断电流(turn off current)受激磁电感(Lm)加入谐振的关係,在负载变化时都会维持在一定值。

      比较图7与图9,两种操作模式下,在fs《f0状态时,二次侧输出涟波电流较大。因此较不适用于大电流输出之应用。

      比较图9与图10,当负载变化时切换频率变化範围较大。负载越轻操作频率越高以稳定输出电压。但过高的操作频率会使得切换损失增加而影响轻载的转换效率。另外我们可以发现在此操作模式下,一次侧切换晶体的关断电流并不会受到激磁电感(Lm)的影响。亦即在此模式下,激磁电感并没有参与谐振。也因为这个特性,我们可以很容易的最佳化满载效率。

      比较图9与图11,两者皆操作于fs》f0区间,在图11中,一次侧切换晶体(MosFET)的关断电流(turn off current)已明显减少。

      一次侧切换晶体(MosFET)的关断电流(turn off current)已明显减少

    一次侧切换晶体(MosFET)的关断电流(turn off current)已明显减少

      一次侧切换晶体(MosFET)的关断电流(turn off current)已明显减少
系统搭配

      综合以上论述,当我们要使用串联谐振转换器应用在大电流输出时,应该考虑将其操作于fs》f0模式中。如此可以得到最佳化的满载效率(不考虑同步整流)。但是相对而言,如何提高轻载及半载效率以及维持空载输出电压的稳定就变得极为重要了。由图六我们可以得知,当负载低于20%时的增益曲线已经相当平缓,表示我们可能无法藉由提高工作频率的方式来调整线路之增益。但是这个问题我们可以藉由突衝模式(Burst Mode)来克服。如图12:

      这个问题我们可以藉由突衝模式(Burst Mode)来克服

      在系统应用中,通常前级会搭配升压型的功因修正线路(Boost PFC)。试想当交流市电输入在低压(115VAC)满载时,升压线路会将串联谐振转换器(LLC-SRC)之输入电压(Vin)提升至约390VDC,因此我们可以针对此输入电压最佳化串联谐振网路之满载效率。但是随着输出负载降低,半桥谐振网路的切换频率会逐渐提高以稳定输出电压,因此在20%及50%负载时效率也会随之下降。

      此时我们必须透过一种降压技术,将升压型功因修正(PFC)线路之输出电压调降,来补偿升压级PFC的功率损耗。此降压功能必须同时在低电压(Low Line input)输入以及非满载条件下才会成立。虽然降压方式是为平衡升压型功因修正(Boost PFC)线路之功率损耗,但对于操作在fs》f0模式的串联谐振转换器而言,刚好也可以使其谐振网路(Resonant network)最佳化并改善了切换频率提高的问题。

[1] [2]  下一页


本文关键字:暂无联系方式科研成果电子知识资料 - 科研成果