您当前的位置:五五电子网电子知识单片机-工控设备嵌入式系统-技术基于SOPC技术的嵌入式数字音频AGC系统的设计 正文
基于SOPC技术的嵌入式数字音频AGC系统的设计

基于SOPC技术的嵌入式数字音频AGC系统的设计

点击数:7908 次   录入时间:03-04 12:00:56   整理:http://www.55dianzi.com   嵌入式系统-技术

基于SOPC技术的嵌入式数字音频AGC系统的设计

查看最近90天中添加的最新产品 最新电子元器件资料免费下载 派睿电子TI有奖问答 - 送3D汽车鼠标 IR推出采用焊前金属的汽车级绝缘栅双极晶体管 全球电子连接器生产商—samtec 最新断路器保护套

     摘要:提出一种基于SOPC技术的嵌入式数字音频的自动增益 控制系统 解决方案 ,移植实时操作系统μC/OS-Ⅱ作为嵌入式应用软件运行平台,通过采用一种多参数融合的AGC算法进行实时AGC处理,设计并实现了应用于数字演播室中,具有一定噪音抑制能力的嵌入式数字音频AGC系统。

  针对传统音频AGC处理中的一些缺陷提出有效的改良方法,设计并实现应用在数字电视台实时视音频处理中,最终获得稳定平衡的音量输出,并具有一定噪音抑制能力的基于SOPC技术的嵌入式数字音频AGC系统。

  1.系统结构设计

  技术是SOC( System on Chip)技术和 电子 设计自动化技术相结合的一种全新的嵌入式系统设计技术,为设计者提供了一个可以快速开发设计及验证的系统设计平台,用以搭建基于 总线 的系统。它包含了一系列的模块,例如NiosⅡ 处理器 、 存储器 、总线、 JTAG 等IP核,还有包含操作系统内核的嵌入式软件 开发工具 。它可以将处理器、存储器、I/O 接口 、硬件协处理器和普通的用户逻辑等功能模块都集成到一个 FPGA 芯片 里,构建一个可编程的片上系统。

  在系统结构上数字音频AGC系统的设计主要包括3个层面:最底层是硬件层面,即物理硬件 电路 的原理图设计,包括各功能IC的外围电路设计;中间层是SOPC系统层,其设计主要有NiosⅡ软核处理器的配置和添加,选择各种可定制的外设IP核和自定义所需模块,将定制好的各个外设模块与Avalon总线进行连接,并为分配外设地址及中断,最后经编译、综合生成可在 FPGA 内实现相应功能的SOPC系统模块;最上层的是软件层,主要是NiosⅡ软核处理器运行的软件程序,是用C/C++代码编写的,包括μC/OS-Ⅱ实时操作系统,设备的驱动程序和应用程序。

  本系统选用的FPGA芯片是 ALTEra 公司所推出的CycloneⅡ系列的 EP2C20Q240C8 。该芯片采用90 nm工艺制造,最大可用I/O管脚142个并内嵌26个乘法器块,支持使用Altera公司的SOPC Builder 工具 嵌入NiosⅡ软核处理器。系统整体架构,如图1所示。

嵌入式数字音频AGC系统整体框图

图1 嵌入式数字音频AGC系统整体框图

  2 数字音频AGC算法的设计与实现

  嵌入式数字音频AGC系统的核心就是音频AGC算法的设计,音频AGC是音频自动增益控制算法,是一种根据输入音频信号水平自动动态地调整增益的机制,AGC算法的好坏直接反映在处理后输出的音频听觉感知效果。

  2.1 算法基本思想

  文中提出一种多参数融合带反馈机制的音频AGC处理算法,在保证输出电平满足条件的情况下,能有效解决传统AGC中过冲或过衰现象,并能够抑制背景噪声的提升,能根据人耳听觉特性输出音量稳定平衡的音频信号。

  用yi(n)代表经过AGC处理的第i帧数字音频信号;xi(n)代表这一帧原始的数字音频信号;Gi表示这一帧的音频增益因子,音频AGC处理可以用如式(1)表示


  2.2 关键特征参数提取

  计算音频增益因子Gi的关键是对当前数字音频的状态判断。由于人耳对音量的主观感觉是从声音响度上来体现的,而响度是由发声体振动幅度的大小来决定,并且人耳对不同频率声音的感应是不平坦的,所以人耳感知的声音响度是频率和声压级的函数曲线。基于人耳的响度感知特性,AGC算法中音频增益因子Gi的计算需要综合考虑声音的振幅、短时能量和频率这3个特征。

  经过数字化的音频信号实际上是一个时变信号,为了能对音频信号进行分析,可以假设音频信号在几十ms的短时间内是平稳的。为了得到短时音频信号,要对音频信号分帧处理,分帧是连续的。为避免AGC系统处理后的因音频分帧延迟带来的画音不同步现象,本设计将分帧定为20 ms。数字电视的音频采样率为48 kHz,所以一帧内的音频样值数有960点。

  音频信号的振幅可以用峰值表示,即由一帧音频信号内的绝对值最大项来表示,用Pi代表第i帧数字音频信号xi(n)的帧内峰值,那么


  短时能量可以有效判断信号幅度的大小,音频信号的短时能量Ei定义如下


  短时能量由于对信号进行平方运算,考虑到处理器的性能和实时性的保证,可以采用绝对值之和代替平方和来表示短时能量的变化,使运算简化,其公式为


  短时过零率是指每帧内信号通过零值的次数,对于数字音频信号实质上就是一帧信号采样点符号的变化次数,由于采样频率是固定的,因此短时过零率可以在一定程度上反映音频信号的频谱特征,用作一种音频信号频率的粗略估计。短时过零率Zi表示为


  其中sgn[…]是符号函数,即


  提取音频中以上3个关键特征参数就可以作为音频增益因子Gi的计算和判决的条件。

  2.3 反馈机制的实现

  在前馈处理中当输入的第i帧数字音频信号xi(n)的帧内峰值Pi超过用户设定的峰值电平门限值Ppeak信号就会被瞬间衰减,增益因子变小。而当输入的第i帧数字音频信号xi(n)的帧内峰值Pi低于用户设定的提升电平门限值PACt并且高于用户设定的噪音电平门限值Pnoise信号就会被瞬间提升,增益因子变大,低于噪音电平门限值Pnoise的信号就不会被提升。

  前馈机制能在音频信号突变导致帧内峰值溢出或过小时,迅速改变增益因子,用非线性的变化将音频稳定在所设定的动态范围内(峰值电平门限Ppeak和提升电平门限Pact之间)。而新增加的反馈机制能通过判断处理后的短时能量调整增益因子Gi+1,使音频信号变化稳定,在一个较宽的时间尺度上均衡响度。AGC算法中计算增益因子的具体流程,如图2所示。

增益因子计算流程框图

图2 增益因子计算流程框图

  在反馈机制中使用α归一化 滤波器 对满足条件的输入音频信号和上一帧的增益因子Gi调整计算新的增益因子

  α 归一化滤波器可以简单表示为


  为了避免增益因子的剧烈波动,需要加大增益因子Gi的权重值α,而权重值α的大小决定了滤波器归一化的收敛速度,|1-α|越大,则收敛速度越快。权重值α的计算需要综合参考短时过零率Zi、处理前的短时能量Mi和处理后的短时能量。在音频剧烈变化的时候,增益因子仍然能够收放自如,稳定平衡音频信号的输出。

  2.4 噪音抑制处理方法

  在AGE中对噪音的抑制是一个重要的部分,噪音主要是音频信号间的静音噪音和AGE处理中产生的噪音。对静音噪音的抑制主要靠噪音电平门限的设定,当输入的第i帧数字音频信号xi(n)的帧内峰值Pi低于用户设定的噪音电平门限值Pnoise时,就将该帧的增益因子Gi调整为1,不进行放大处理。当输入的音频峰值连续低于噪音电平门限的时间达到静音时间ts则将输出音频静音,这样就可以抑制噪音而不影响音频输出质量。

[1] [2]  下一页


本文关键字:技术  嵌入式  嵌入式系统-技术单片机-工控设备 - 嵌入式系统-技术