嵌入式应用系统中,普遍存在功耗浪费现象。
1 零功耗系统设计的基本概念
1.1 系统中的理想功耗
一个电子系统要运行就会有功耗。如果系统运行时没有任何功耗浪费,那么它的功耗就是系统的理想功耗。
在一个嵌入式应用系统中,由于普遍存在CPU高速运行功能和有限任务处理要求的巨大差异,会形成系统在时间与空间上巨大的无效操作。如果在系统运行中,所有时间、空间上的无效操作都没有功耗,那么系统便处于理想功耗运行之下。
1.2 应用系统中的有效操作时空占空比
如果将系统运行中,所有时间、空间上的有效操作和无效操作采用时空占空比来量化描述,那么,有效操作占空比定义为:有效操作与系统全部运行操作之比。在一个具体应用系统中,有效操作的时空占空比有:宏观时域占空比、宏观区域占空比、微观时域占空比和微观区域占空比。以下以一个嵌入式应用系统--热流量计为例来描述这4个占空比的概念。
1.2.1 有效操作的宏观时域占空比Tdc
Tdc定义为系统运行时域上有效操作时间OPACt与全部运行时间OPtot之比。由于嵌入式应用中CPU的高速运行与有限任务操作的差异,常常会形成有效操作高谐小量的时域占空比现象。例如,在热流量计中,要采集、处理的物理参数有热水的入口温度、出口温度和流量计数值。由于这些参数的大惯量特征,在满足采集精度要求下,一次采集循环周期为10 min,然而系统完成一次采集、处理、存储、送显示的时间只需2 s,如图1所示。那么,该系统的有效操作时间OPact为 2 s,全部操作循环时间OPtot为600 s,系统宏观有效操作时域占空比为
1.2.2 有效操作的宏观区域占空比Sdc
有效操作宏观区域占空比定义为:系统运行时,有效操作区域Sact与系统全部区域Stot之比。由于系统运行时,并不是所有电路单元都处于有效操作状态,特别是在单CPU系统中,所有功能单元都是在CPU的轮流控制下运行,致使系统的各部分电路轮流进入有效操作状态。例如,在热流量计中,在有效操作时域OPact中,除CPU外,采集、处理、存储、送显示的4个主体操作是轮流进行的,如图2所示。如果按等区域原则最粗略地估算,可以算出该系统宏观有效操作的区域占空比为在系统硬件设计中,如果有意识地按任务进程,对系统电路进行粗略的划分,形成相对独立任务运行空间,这样便可较准确地计算出Sdc值。
www.55dianzi.com
1.2.3 有效操作的微观时空占空比
在数字系统中,进入有效操作状态的一个完整电路中,也不是每一时刻、每一电路单元都处于有效操作状态,同样可以估算出微观有效操作的时域占空比和区域占空比。
(1)有效操作的微观区域占空比μSdc
μSdc定义为:有效操作电路单元中,平均有效操作区域Aact与全部电路单元区域Atot之比。例如,热流量计在执行数据存储任务,对EEPROM进行存储操作时,EEPROM的三个操作区域,即输入缓冲电路、转换控制电路和EEPROM阵列轮流进入有效操作状态。设这三个区域有效操作功耗相等,那么,热流量计在数据存储时,存储器EEPROM的微观有效操作区域占空比为
(2)有效操作的微观时域占空比μTdc
系统中,所有处于有效操作的电路,真正的有效操作只表现为"0"、"1"状态的变化操作。因此,电路有效操作的微观时域占空比μTdc定义为:电路的动态时间ATact与全部时间ATtot之比。例如,在热流量计的数据采集任务中,频率测量的逻辑控制电路要根据温频传感器输出的信号脉冲,实现频率测量控制。这些操作控制都出现在脉冲的变化沿。设温频传感器输出的信号脉冲频率为20 kHz,测控逻辑状态变化时间小于100 ns,可以估算出,在数据采集任务中,频率测量控制逻辑电路有效操作的微观时域占空比为
1.3 高谐小量时空占空比与零功耗设计
1.3.1 实际系统中高谐小量的时空占空比
在嵌入式应用系统中,CPU高速处理能力与实际任务操作状态以及系统中的微观静、动态的巨大差异,导致大量无谓等待状态,形成有效操作的时、空占空比现象。上述4类占空比现象,在许多嵌入式应用系统中都会存在,而且这4类占空比形成乘积效应。按照上述估算,热流量计总体有效操作的时空占空比OPdc为
从这里揭示了一个惊人的现状,即在一个嵌入式应用系统中,有效操作只是全部运行操作的高谐小量。这一特点是嵌入式系统零功耗设计的基础。零功耗系统按照有效操作时空占空比实行精细的功耗管理,非有效操作期间没有功耗,从而使系统功耗与原来相比达到趋于零的效果。早期提出零功耗概念,并实现零功耗设计的器件有AMD公司的Flash存储器Am29SL800B。早先Am28F800B的功耗量级为100时,改进工艺并降低电压后的Am29SL800B为20,而实现零功耗管理的Am29SL800B的功耗则小于0.1。可见零功耗系统设计在降低系统功耗中的潜力。
1.3.2 零功耗系统设计基本要求
在不少实际的嵌入式应用系统中,虽然有效操作时空占空比不会是热流量计那样显著的高谐小量,但一般都会有0.1 %的量级。如果能按照系统有效操作时空占空比实施精细的功耗管理,使无效操作期间没有功耗,就可实现系统的零功耗。
零功耗是一个工程概念。零功耗系统是指该系统中没有任何功耗浪费。因此,零功耗系统设计的基本要求如下:
(1)系统中所有的电路单元都具有功耗管理功能,即该电路单元在非有效操作期间都能被关断(没有功耗)。
(2)系统具有按有效操作时空占空比实施精细功耗管理的能力,能做到"多干多吃、少干少吃、不干不吃、谁干谁吃"的系统功耗分配。
(3)对于系统无法企及的微观有效操作时空占空比的功耗管理,要求由电路静、动特性来满足功耗分配,即电路动态过程有功耗,电路静态时没有功耗。
2 零功耗系统设计的技术基础
零功耗系统设计的核心技术,是按系统中有效操作时空占空比来实现按需分配的功耗管理。不仅实现宏观有效操作时空占空比的功耗管理,还要实现微观有效操作时空占空比的功耗管理。因此,实现零功耗管理必须有相应的技术基础,这就是CMOS工艺的电路基础、嵌入式系统实时的智能化控制以及具有功耗管理功能的外围器件。这些技术基础可以满足零功耗系统设计的三个基本要求。
www.55dianzi.com
2.1 CMOS工艺的电路基础
数字电路从TTL工艺转向CMOS工艺,对电路功耗特性产生最大影响的是静动态(静态是"0"、"1"的恒定状态,动态是"0"、"1"的跳变状态)功耗特性的根本差异。正是这一差异诞生了电路系统功耗管理的概念与技术。图3是TTL电路和CMOS电路静动态功耗特性。图3(a)为TTL功耗特性,图3(b)为CMOS电路功耗特性。TTL电路为电流注入型电路,静动态电流相近;而CMOS电路为压控型电路,只在动态下才消耗电流,静态电流为泄漏电流,理想情况下静态电流为零。根据数字电路的有效操作态只表现为电路的动态情况,那么,只有CMOS电路才能提供按有效操作时空占空比实施功耗管理,而且指出了CMOS电路功耗管理的基本原则就是系统的最大静态化设计。对于功耗管理无法企及的微观时空占空比,CMOS电路静、动态特性能自动保证非有效操作时的极微功耗(电路泄漏形成的功耗)状态。
本文关键字:嵌入式 嵌入式系统-技术,单片机-工控设备 - 嵌入式系统-技术