您当前的位置:五五电子网电子知识单片机-工控设备嵌入式系统-技术基于ARM920T内核的16/32位RISC嵌入式CPU的解析方案 正文
基于ARM920T内核的16/32位RISC嵌入式CPU的解析方案

基于ARM920T内核的16/32位RISC嵌入式CPU的解析方案

点击数:7283 次   录入时间:03-04 11:37:01   整理:http://www.55dianzi.com   嵌入式系统-技术

    1 前言

    在当今后PC时代,嵌入式系统应用得越来越广泛,嵌入式产品充斥着许多领域,日常生活的手机,MP4,PDA等都属于典型的嵌入式系统。在嵌入式系统中,微处理器和操作系统是进行应用开发的基础。在微处理器方面,S3C2410是Samsung公司推出的一款基于ARM920T内核的16/32位 RISC嵌入式CPU,主要面向手持设备以及高性价比、低功耗的应用。在操作系统方面,Windows CE 5.0是由微软提供的一款嵌入式操作系统,在Windows CE 4.2基础上,它又加入了一些新特性以满足市场需求。板级支持包 (Board Support PACkage,BSP)是操作系统的一个组成部分,提供对硬件的支持。BSP的开发在整个产品开发时间上占了很大比例,快速的移植满足产品需求的BSP 在竞争激烈的市场环境里显得很重要。目前已有许多关于S3C2410、Windows CE以及BSP相关的研究报道,文献[1]研究基于s3c2410的GPS通信技术及实现,文献[2]中详尽分析Windows CE的结构,文献[3]中归纳了Windows CE 4.2专用操作系统的定制和裁剪方法,文献[4]则探讨基于DSP嵌入式多媒体应用系统板级支持包的开发。目前关于Windows CE的应用主要采用Windows CE 4.2及以下版本,本文研究基于S3C2410的Windows CE 5.0 BSP移植技术。

    2 Windows CE 5.0及BSP结构分析

    移植基于S3C2410的Windows CE 5.0 BSP,需要分析Windows CE 5.0 及BSP结构。Windows CE 5.0是一款开放的、可升级的32位嵌入式操作系统,具有高可靠性,是一种硬实时嵌入式操作系统,它可以在多种处理器架构(如x86、MIPS、ARM和 SH4)上运行,Windows CE支持ARM体系结构,这是基于S3C2410 处理器进行BSP移植的前提条件。Windows CE 5.0 BSP通常包含以下几部分:Bootloader,OAL(OEM adaptation layer),设备驱动程序,配置文件等。

    BootLoader是加电即运行的一段程序,它初始化硬件,建立系统的内存空间映射,为最终调用系统内核做准备。在Windows CE 5.0系统中,它主要用于下载和启动镜像nk.bin,也就是两种工作模式:启动加载模式:用户最终使用的产品即为该模式;下载模式:镜像首先被bootloader下载到目标机的RAM中,然后被固化到Flash。

    设备驱动程序按照导出的接口不同可分为:本机驱动程序以及流接口驱动程序.本机驱动程序有GEWS.exe加载的鼠标,键盘,触摸屏,显示驱动等。而流接口驱动程序使用一组流函数来实现,通常由DevICe.exe加载,如网卡,声卡,USB等。

    OAL是逻辑上驻留在Windows CE内核与目标设备之间的代码层,在物理上OAL与内核库连接来产生内核可执行文件。OAL简化了操作系统与目标代码之间的通信,OAL代码用来处理中断,记时器,电源管理,通用I/O控制等[5]。

    Configuration File里面包含的是与生成的镜像相关的配置信息。

    移植Windows CE下S3C2410对应的BSP,就是修改Windows CE自带的BSP或者修改硬件平台以前版本的BSP的几个主要组成部分,使得BSP能有效支持硬件系统。

    3 BSP移植

    如果从零开始开发Widows CE 5.0 BSP,则需要相当长的时间。通常的做法是:(1)将自己硬件平台基于Windows CE 4.2及以前版本的BSP移植到Windows CE 5.0系统上;⑵从Windows CE 5.0 BSP中寻找与硬件平台最接近的作为模板,然后再从自己的硬件平台上入手做相应的修改,从而得到可以在自己系统上使用的BSP。本文探讨的BSP移植属于第一种情况。

    本次移植平台采用的是深圳英蓓特公司的EdukitIII实验箱,微处理器是S3C2410,外带64M NAND Flash芯片等相关硬件资源。软件资源有:edukit2410包(Windows CE 4.2版本下的BSP)。

    3.1 bootloader移植

    bootloader的执行流程如下:

    (1)执行startup.s:对CPU,内存控制器,Cache等做一些基本的初始化。

    (2)初始化串口:调用函数OEMInitDebugSerial()来完成。

    (3)初始化平台:调用函数OEMPlatformInit(),主要对所需硬件资源进行初始化,通常包括:以太网控制器(CS8900A)、系统时钟、存储设备以及其他一些外围设备。

    (4)调用函数OEMPreDownload():做一些准备工作如获取IP地址,初始化TFTP连接等。

    (5)执行函数DownloadImage():下载镜像到SDRAM中。

    (6)调用OEMLaunch()函数启动操作映像。

    其中startup.s,OEMInitDebugSerial()可以与OAL共享使用,两函数的修改在OAL移植过程中叙述。

    Bootloader移植主要过程有:

    (1)修改相应的dir,source文件,下面列出部分库路径:

    TARGETLIBS=

    $(_TARGETPLATROOT)lib$(_CPUINDPATH)CSP_arm.lib

    $(_COMMONOAKROOT)lib$(_CPUDEPPATH)eboot.lib

    $(_COMMONOAKROOT)lib$(_CPUINDPATH)cs8900dbg.lib

    其中csp_arm.lib这个库只存在于Windows CE 4.2的$(_PUBLICOAKROOT),是ARM体系结构链接库之一,在Windows CE 4.2系统下位于PUBLIC目录,而在Windows CE 5.0系统下存在于PLATFORM,导致编译系统找不到该库文件,因此,修改这个库的链接路径,使得Platform builder这个编译系统能够找到这个链接库。

    (2)修改makefile.inc,因为该文件指定生成eboot.bin(Ethernet bootloader镜像)所需要的文件以及拷贝eboot.bin到releasedir目录,其中:

    romimage $(_TARGETPLATROOT)ebootoot.bib

    为生成生成eboot.bin所需要的配置文件,否则,系统通过编译却无法生成eboot.bin.

    (3)修改boot.bib,使其不与config.bib中的内存分配造成冲突。

    (4)改进eboot,因为eboot烧写NK.BIN(OS镜像)的时候会查找BINFS分区,然后把下载的image烧写到BINFS分区。如果没有找到现存的BINFS分区,eboot会低格NAND FLASH,并创建MBR(main boot record),在MBR中有分区表。目前最多支持4个分区,而BINFS分区的大小是以NK.BIN展开的大小按bLOCk对齐,所以会出现个问题,当修改过重新生成的NK.BIN比之前写进NAND FLASH的IMAGE大并且超出block对齐的时候,将会导致烧写新的NK.BIN失败,我们可以通过每次下载烧写NK.BIN前先低格NAND FLASH来解决这个问题,但显然这不是妥善的解决方法,增加用户使用复杂度,所以我们可以把BINFS分区的大小固定,而这个固定的大小可以参考生成 NK.BIN的config.bib中定义的ROMSIZE,这样无论NK怎么修改,BINFS一经创建无需更改,eboot把NK写进NAND FLASH之后,会把剩余的FREE空间创建一个FAT分区,如果我们要实现HIVE REGISTRY就可以把这个分区mounts成MountAsBootable。

    3.2 OAL移植

    OAL的移植过程中,OEM主要实现以下几个函数:Startup.s,调试串口函数,OEMInit函数,系统时钟函数,中断处理函数等。

    (1)修改Startup.s,此函数为OS启动时第一个要调用的函数,也是OEM要实现的重要函数之一,主要完成的功能是:将CPU初试化到一种已知的状态;并调用内核初始化函数kernelstart。Startup.s需要修改,修改后的部分代码如下:

[1] [2]  下一页


本文关键字:嵌入式  嵌入式系统-技术单片机-工控设备 - 嵌入式系统-技术