由图8可见,功率器件不是简单地串联,而是结构上的串联,通过电容钳位,保证了电压的安全分配。其主要特点是:
1)通过整体单元装置的串并联拓扑结构以满足不同的电压等级(如3.3kV、4.16kV、6.6kV、10kV)的需要。
2)这种结构可使系统普遍采用直流母线方案,以实现在多台高压变频器之间能量互相交换。
3)这种结构没有传统结构中的各级功率器件上的众多分压分流装置,消除了系统的可靠性低的因素,从而使系统结构非常简单,可靠,易于维护。
4)输出波形非常接近正弦波,可适用于普通感应电机和同步电机调速,而无需降低容量,没有dv/dt对电机绝缘等的影响,电机没有额外的温升,是一种技术先进的高压变频器。输出电压和电机电流波形如图9所示。
5)ALSPAVDM6000系列高压变频器可根据电网对谐波的不同要求采用12脉波,18脉波的二极管整流或晶闸管整流;若要将电能反馈回电网,可用晶闸管整流桥;若要求控制电网的谐波、功率因数,及实现四象限运行,可选择有源前端。
6 多电平+多重化变频器
日本富士公司采用高压IGBT开发的中压变频器FRENIC4600FM4系列,它汇集了多电平和多重化变频器的许多优点,它以多个中压三电平PWM逆变器功率单元多重化串联的方式实现直接高压输出,因此构成了一个双完美无谐波系统:对电网为多重叠加整流,谐波符合IEEE5191992的要求;对电动机为完美无谐波正弦波输出,可以直接驱动任何品牌的交流鼠笼型电动机。
该型变频器由于采用了高压整流二极管和高压IGBT,因此系统主电路使用的器件大为减少,可靠性提高,损耗降低,体积缩小。变频器的综合效率可达98%,功率因数高达0.95,不需要加设进相电容器或交直流电抗器,也不需要输出滤波器,使系统结构大为简化。图10所示为FRENIC4600FM4的主电路及功率单元结构图。
但是仔细分析,该型变频器的性能价格优势并不大,与其同时采用多电平和多重化两种技术,还不如采用前面提到的高压IGBT的多重化变频器,反而显得有些不伦不类。因为,用三电平技术构成单相逆变功率单元,在器件数量上并不占优势,要比同样电压和功率等级的三电平三相逆变器足足多用一倍的器件,同样比普通单相逆变功率单元也正好多出一倍的器件。例如:用3300V耐压的IGBT器件,采用单元串联多重化电路6kV系统每相需三个单元串联,总共9个单元,共需54只整流二极管,36只IGBT;而采用三电平功率单元,每相需两个单元串联,总共6个单元,共需72只整流二极管,48只IGBT,足足多用了1/3的器件并且使功率单元的冗余成本增加了一倍,降低了多重化变频器冗余性能好的优点,同时增加了装置的成本。所以该型变频器实际上并不可取。
7 变压器耦合输出高压变频器
中高压变频器的主电路拓扑结构,除了前面提到的二电平、多电平和单元串联多重化方案外,1999年,有人提出了一种新型的变压器耦合式单元串联高压变频器主电路拓扑结构。其主要思想是用变压器将三个由高压IGBT或IGCT构成的常规二电平三相逆变器单元的输出叠加起来,实现更高电压输出,并且这三个常规逆变器可采用普通低压变频器的控制方法,使得变频器的电路结构及控制方法都大大简化。
图11是这种新型高压变频器的拓扑结构图,该方案由下列部分组成:
——一个18脉波的输入变压器,可基本实现输入电流无谐波;
——三个常规两电平的三相DC/AC逆变器;
——三个变化为1:1的输出变压器;
——高压电机。
下面从几个方面分析其工作原理。
1)电压关系
考虑电机的线电压,可得:
电压间的这种关系体现在图12中。每个逆变器都采用SPWM或空间电压矢量PWM(SVPWM)控制方法,每个逆变器输出线电压的有效值为〔(2
)〕aE,其中E为逆变器输入直流电压,a为调制深度,在谐波注入SPWM和SVPWM中a最大可为1.15。由式(2)可得电机线电压的有效值为〔3
/2
〕aE。
对线电压为2300V的高压电机,E=1090V,采用额定电压为1700V的IGBT就可构成本系统;对线电压为4160V的高压电机,E=1970V,可采用额定电压为3300V的IGBT;而当高压电机的线电压为6600V时,E=3130V,则应采用额定电压为4500V的IGCT;因此本方案具有很强的适应性。
2)电流关系
设电机三相电流平衡,电流的有效值为I,在不考虑电流谐波的情况下
考虑到输出变压器原边和副边电流相等,可计算得到第一个逆变器的三个输出电流为,
Isin(ωt)
ib1=Isin(ωt-120°)(5)
ic1=Isin(ωt+120°)
另外两个逆变器的三个输出电流也满足以上关系,即:
本文关键字:变频器 变频器基础,变频技术 - 变频器基础