您当前的位置:五五电子网电子知识电工技术电工文摘BSD技术特性与应用(2) 正文
BSD技术特性与应用(2)

BSD技术特性与应用(2)

点击数:7847 次   录入时间:03-04 11:41:11   整理:http://www.55dianzi.com   电工文摘
BSD是将silicon奈米结晶化形成锁鍊状结构,藉此使电子呈弹道状移动,一般将此现象称为弹道电子输送。图1是BSD电子源的动作机制说明图,基本上它是在柱状polysilicon之间形成电子drift层,polysilicon与奈米结晶silicon混合的systemunit称为NPS层(NanocrystallinePoly-Siliconlayer),虽然NPS层是利用阳极氧化技术制成,不过在polysilicon的结晶粒界的glen部位会产生快速反应,因此polysilicon结晶粒的表面,支配性形成奈米结晶silicon,使得NPS层内残留的silicon结晶粒比奈米结晶silicon多,该残留的柱状polysilicon可帮助散热,进而提高冷阴极的电子热传导稳定性,所以BSD释放电子时几乎不会产生闪烁噪讯(flickernoise)。

BSD释放电子时是利用电子作热激发,使电子从基板下方注入NPS层,由于奈米结晶silicon的表面,是利用低温氧化制程制成氧化薄膜,因此施加的电压几乎全部流入该氧化膜层内进而形成强电界领域,而氧化膜的厚度非常的薄,所以电子很容易将强电界领域的氧化膜变成tunnel,并进入邻接的奈米结晶silicon内,随着电子通过氧化膜被加速,并朝向表面电极方向前进,如此反覆相同动作所以到达表面附近的电子,具备比热平衡状态更高的运动能量,而表面电极也变得很容易将成为tunnel的电子释放至真空中。

BSD具体动作原理如图1所示,BSD电子源是先在由负极(cathode)所构成的背面基板上制作复晶硅膜(poly-Silicon),之后将复晶硅膜多孔化(porous),接着在复晶硅之间制作复数的微结晶硅,同时将复晶硅与微结晶硅的表面氧化,多孔化复晶硅(PPS:PorousPolySilicon)膜层厚度约1.5μm,最后在PPS表面制作Au或Ag等金属薄膜形成二极体(diode)结构,除了以上的差异PPS外部电子发射源的动作原理则与传统的FED完全相同,换句话说这种BSDtype的FED,也是利用电子撞击正面基板表面上的萤光体产生影像,它与以往的FED最大差异处,是电子发射源的制作方式与结构不同而已。



图1BSD的动作原理
 
图2是释放至真空中的电子能量分佈量测结果,图中的x轴为电子能量,y轴为释放电子的相对数,测试时的基准能量是比照真空状态时的准位,测试方法是在室温下进行,採用一般性的交流减速电界法。假设表面金属的动作关数为ψ(eV)时,完全未发生冲突释放出去的电子最大能量,理论上几乎等于施加电压减去动作关数ψ的能量,以图2为例假设VPS=22V时,虽然分佈的最大能量-Vmax祇有17eV,不过表面电极的动作关数大约有5eV,换言之它与上述施加电压减去动作关数的结果完全一致,由此验证BSD具有独特的弹道电子释放特性。实际上在室温环境下NPS层多少会发生冲突,一般是将它视准弹道电子的释放。

如图2所示的能量分佈峰值位置,亦即电子数最多的能量,理论上是最大能量的60%约在10eV处,即使如此若与其它种类的电子源比较时,很明显的是BSD具备很高的能量。另一个特殊现象是该能量分佈与施加电压具有依存性,也就是说随着VPS的增加,峰值能量Emax与最大能量会逐渐移至highenergyside,这意味着BSD释放的电子在NPS层几乎未散乱,如果在低温环境下测试释放电子的能量分佈,上述弹道电子释放更加明显,而且能量分佈幅度更加狭窄(峰值能量EP朝最大能量Emax方向移动)。



图2BSD释放电子能量的特性
 
综合以上的说明可知BSD的电子释放机制,是当电压注入上方电极与背面基板之间时,下方铝质电极所产生的电子会注入PPS层内的微结晶硅,而电子通过微结晶硅内部时几乎没有能量损耗(energyloss),主要原因是一旦施加电界后,微结晶硅表面的氧化膜会使电子加速。此外一般硅内部的平均自由行程约为50nm,而微结晶硅的glensize祇有5nm。由于当电子通过PPS层时,几乎不会与其它电子或硅原子发生冲突,因此电子通过微结晶硅内部时,能量损耗几乎等于零,使得到达上方金属电极的电子能量减去金属的动作关数值最大可达14~15eV,这种现象称为弹道电子传导效应。以往的弹道电子传导效应必需在真空环境下才会发生,不过BSD利用多孔化(porous)将复晶硅膜(polysilicon)包覆,因此它可在固体中产生弹道电子释放现象。利用这样的特性制作FED时可使已加速的电子,在cellgap内部呈垂直状发射出,并使电子撞击正面基板表面上的萤光体产生影像。由于BSD的电子发射源可将电子呈垂直状发射出去,因此cellgap高达数mm的高电压型FED,也不需要设置电子束收歛电极防止失真(crosstalk)现象。


本文关键字:技术  电工文摘电工技术 - 电工文摘