精镗自动补偿技术在国内主流汽车发动机厂中的应用
点击数:7615 次 录入时间:03-04 11:36:41 整理:http://www.55dianzi.com 汽车电工
缸孔精镗自动工艺的选择
在缸体加工中,缸孔精镗是最重要的工序之一,涉及的尺寸精度和形位误差,将直接影响到发动机的质量。因此,企业在规划这道工序时,会持十分慎重的态度,既要保证零件的实物质量和工序质量,又要结合产品和企业的实际情况采用最适合的方案。缸孔精镗的工艺选择牵涉到加工设备、镗削工艺、镗刀(包括刀片材料、是否带补偿功能等)等诸多因素。
自上世纪90年代中期以来,加工中心得到了日益普遍的应用,还出现了完全由加工中心组成的自动线,包括缸体线,但这是否就是一种发展趋势呢?事实证明,这只是一种可取的模式。
近年来,国际知名的机床供应厂商和汽车企业集团很看好并力主优先采用的是“混合型柔性自动线”,即一种组合/专用机床和加工中心相混合的柔性线,其优点是生产效率高,同时又具有相当的柔性,能够适合大批量生产和变型产品生产。在以这种模式加工缸体时,缸孔的镗削工序是由专用机床承担的。
与此同时,多年前已经配置使用的精镗自动补偿则进一步提高了缸孔精镗的加工质量。只是这一措施的有效性虽然得到确认,但作为一种工艺选择,企业在规划和实施时仍会出于经济性、适用性等各方面的考虑,最后根据自身的实际情况做出决定。
通过对国内20多家主流汽车发动机厂(包括柴油机厂)60余条缸体生产线的调查,对缸孔精镗采用的工艺技术有了比较清晰的了解。探明了缸孔镗削加工工序中采用组合/专用机床与加工中心的比例分配概况。
在我们调查的这60余条缸体线中,于2002年后建成投产的新线占了一半弱(47.5%),但在这些新线中,缸孔镗削工序采用加工中心的比例增加到45%。这表明近年来由加工中心组成的柔性自动线在发动机主要零件制造中的应用面在扩大。
然而相对而言,上述“混合型柔性自动线”还是稍占优势,按这种制造方式,缸孔镗削工序均是在专机上完成的。事实上,国内在2005年以后建成的多条具有先进水平的、有代表性的缸体线,如东风康明斯、上海通用L850项目、大众动力总成(上海)、大连柴油机厂、大众一汽发动机(大连)等,均采用这种模式。
至于带有缸孔精镗自动补偿功能的设备,其在全部被调查的60多条生产线中占54%。其中,当缸孔精镗采用专机方式加工时,带有这项功能的占64%。而采用加工中心时,仅有25%的工序有这项功能。

图1 精镗自动补偿系统的组成及工作原理
事实上,尽管精镗自动补偿是一项应用多年的成熟技术(过去也被称作“自动补调”),但随数字控制、检测等相关技术的不断发展,尤其是处于补偿系统核心地位的可微调镗杆的改进、完善,都已大大提高和扩展了补偿的效能,体现了这项成熟技术正在不断进步。
精镗自动补偿功能的实现
自动补偿系统由随机检测、(信号)反馈补偿和具有微调功能的镗头等三部分组成,在发动机主要零部件中,除缸体外,连杆加工中应用镗孔自动补偿系统也较多,但就补偿的原理和系统组成而言是完全相同的,参见图1。
其工作循环为:镗刀在加工孔后退出,由电子塞规(测头)对工件进行测量;然后测头退出,检测信息送入测量仪,经放大和A/D转换后即进到补偿控制单元,在其中进行运算后,做出相应的判断,若需要实施补偿,就发出相应的指令给补偿执行器;补偿执行器可以有不同的形式,图3所示的为伺服电机,此时需通过连轴器转换为拉杆的轴向移动,有时还需配以冷却液供应装置;最后,由拉杆产生位移,并通过具有微调功能的镗头(刀)引起镗刀的切削刃(刀尖)的径向位移,从而完成了镗孔过程中刀具的自动补偿。
在构成系统的三要素中,由测头/电子塞规与测量仪组成的随机检测部分其实与常用的线外检测装置相同。而在组成(信号)反馈补偿系统的控制器、执行单元和辅助部件中,控制器已经产品化,一般由随机检测的供应厂商配套提供。当采用伺服电机或步进电机作为执行机构时,还配以驱动电源。
著名量仪公司MARPOSS就采用这种方式与机床厂合作以满足用户需要。因此,在发动机厂规划人员做出的缸孔精镗自动补偿的工艺选择中,除了补偿的执行方式外,系统三要素中的最后一个—─具有微调功能的镗头(刀)的选择就显得很重要了。
必须指出的一点是,近年来,上述系统中的测量仪和补偿控制单元已经一体化,为通用的、以工控机为基础的计算机辅助测量系统所取代,如MARPOSS公司的E9066产品。
迄今,在精镗补偿系统中,采用斜楔机构的微调镗刀所占的比例仍然最大,虽然实际应用中的刀具在具体结构上会有所差别,乃至拉杆的驱动方式也完全不同,但基本工作原理均相同。
图2是这类镗刀的示意图,其中部的拉杆前端有一角度很小的斜楔,与斜楔紧密接触的是一杠杆上部的短柱,而杠杆下部的前端即安装有精镗刀片。这样,当拉杆前后移动时,就会引起刀尖的径向微小位移。依据已知的斜楔角度和杠杆比,就能建立拉杆的轴向位移量与刀尖径向位移之间的数学关系,从而实现量化的刀具微调。
但经由随机检测后输出的测量信息,又是如何转化为相应的补偿指令,并确定刀尖的径向位移量的呢?从图1可见,乃是通过控制单元(补偿控制器)对检测结果的运算、处理,并做出相应的判断后给驱动装置发出指令来实现的。只是运算、处理的模式,也就是执行补偿的数学模型必须由用户的工艺部门、质量部门根据自身情况来决定。下面是一个有代表性的例子。
1. 设置值:
(1)T为孔径公差,可表达为±T/2;
(2) k‧T为受控范围,可表达为±1/2k‧T ,即对公差T予以压缩(k<1),“+1/2k‧T”和“-1/2k‧T ”称控制线或警戒线;
(3)Xi是孔径的测值,在采用比较测量方式时,可看作是相对孔径名义尺寸的偏差;
(4)n是一次连续检测工件的数量,是进行运算处理的基数。
2.补偿条件:
(1)控制单元执行每次连续测量5个工件,然后取平均值的处理模式;
(2)当时,需要进行补偿;
(3)在需要补偿时,补偿量取,即把镗刀的刀尖位置调整到孔径的名义值,也就是公差的中点;
一般情况下,n取5,而k取0.5。
当然,也有发动机厂采用更为简单的补偿模式,如在某一生产批量很大的缸体生产线上,缸孔精镗采取“强制补偿”方式,具体做法是精镗刀片每加工10个孔,就自动补偿刀具的磨损量1μm。
以上介绍的精镗补偿系统,是一种死循环控制的反馈自动补偿,但实际上在汽车、柴油机等行业,真正用于缸孔精镗工序时,还有手动调整/补偿的模式,这种情况不仅存在于国内早期建成的发动机厂,至今还为一些企业所采用。
建成于上世纪80年代末的上海大众发动机一厂堪称国内最先投产的现代化汽车发动机厂之一,其缸体生产线是一条全部由组合/专用机床构成的刚性自动线,内中的缸孔精镗工序就采用手动补偿。奇瑞汽车发动机一厂的一条缸体“刚性”生产线,在缸孔加工中也采取相似的方式。但这并非只是企业早期的一种工艺选择,吉利汽车近几年建成的3条缸体生产线的缸孔镗削工序中都具有精镗补偿功能,只是均为“开环”的手动控制。
然而,即使都为“手动”,在具体做法上也有差别。在上海大众发动机一厂的缸体线中,相对以上图1所示的系统组成,其实只少了驱动装置。自动线中用于全检的随机检测量仪和控制单元还是能按预先设置的补偿要求自动给出补偿量,只是需要人工操作(一般在机床控制面板上执行)而已。
吉利汽车的模式就简单得多,生产线内不设置随机检测工位,操作人员只是依据线外设置的检具,根据在每一个抽检周期所得到的测量结果来决定补偿与否及补偿量。具体做法也是先在公差范围内建一警戒(控制)区域,当发现一个周期(如1小时)抽检的1件(或3~5件)的实测值(或平均值)超出警戒线后,就人工执行补偿操作,调整到公差的中间值。
微调型精镗刀的发展及对缸孔精镗工序质量的提升
1. 偏转机构微调镗刀的应用
虽然采取斜楔工作原理的微调镗刀仍有广泛的应用,但较晚出现的偏转机构微调镗刀也因其优越的性能在发动机行业获得了较多应用。近年国内新建的一些先进的连杆、缸体生产线的孔的精镗工序都已有采用这种新颖镗刀的实例。图3a给出了这种微调镗刀的工作原理。
简言之,刀片切削刃的径向调整r是通过偏转机构转换而带来的。偏转机构主要由调整叉、垫(滑)块和偏转轴等组成,从图3a可见,与调整叉同轴相连接的拉杆(图中未示)的轴向位移“s”使得壳体内的调整叉随之运动,调整叉内部两表面与中心线有一个夹角“α”。
起传递作用的偏转轴通过回转枢轴固定在壳体上,并借助两个垫块与调整叉两内表面相配合,因此当调整叉轴向移动时,偏转轴会产生相应的径向位移。长度为L的镗杆通过端面连接固定在偏转轴的左侧,刀片的切削刃位于镗杆前端。在图中状态下,刀刃的径向位移“r”与拉杆的轴向移动量“s”之间存在以下关系:
r=(A/B X tgα) X s
式中A=L+k1,k1是偏转轴的一个结构参数,图3b中的k1=10mm。
图3b是一种缸孔微调镗刀的结构示意图,采用了偏转机构工作原理,按图标结构参数,当补偿驱动装置有1mm的轴向位移时,刀尖相应的径向位移为16.25μm。或者说,为了得到刀尖1μm的径向补偿量,需要拉杆轴向移动0.062mm,这对一个可靠的
[1] [2] 下一页
本文关键字:技术 汽车 发动机厂 汽车电工,应用领域 - 汽车电工