3.2鉴频鉴相器
鉴频鉴相器电路如图7所示,它由两个带复位功能的D触发器构成,设计时在信号路径上增加了传输门单元,用来匹配UP和DN控制信号之间的延迟。电路采用高电平实现复位,鉴相范围为-2π~2π。通过改变反相器的尺寸,可以调节复位脉冲延时宽度,消除鉴相死区,提高鉴相精度。
图6 压控振荡器差分延迟单元
图7 鉴频鉴相电路
4 结果分析
本文提出的电荷泵锁相环电路基于 Dongbu HiTek 0.18 μm CMOS工艺设计,采用HspICe模型进行了详细的仿真验证。
图8是典型模型下电荷泵充放电电流匹配性仿真结果,仿真结果表明,输出电压在0.25~1.5 V变化时,电荷泵的充放电电流一致性保持很好。表1给出了在不同工艺角、不同输出电压下,电荷泵充放电电流的相对失配量(或相对误差δi,用百分比表示),由表1的数据可以看出,本文改进的电荷泵电路有效抑制了充放电电流的失配。
图8 电荷泵电流匹配性仿真结果
表1 不同工艺角下电荷泵充放电电流的相对失配量(δi)
图9给出了压控振荡器的控制电压与输出频率关系的仿真结果,从图中可以看出,按照输出频率的不同,延迟单元产生的三段不同的线性度,分别对应图6中的接0.4,5和50 kΩ电阻的电流路径。该线性范围大致可以分为:25~120 MHz为第一段;120~650 MHz为第二段;650 MHz~2.2 GHz为第三段。第一和第二阶段的线性范围较宽,而第三阶段进入高频后线性范围有所下降,但总体来看所采用的分段线性控制实现了较好的效果。
图9 压控振荡器的控制电压与输出频率关系曲线
图10给出了锁相环建立过程的仿真波形,图中给出的是VCO控制电压的波形,在输入参考频率为31.5 MHz、频率反馈设置为32分频时,系统锁定时间约为1.5μs.MFC模块的采用和压控振荡器分段线性的处理有效扩展了锁频范围,输出频率在25 MHz~2.2 GHz内可调。在实际应用中,可以通过选择常用晶振频率和整数分频倍数获得更多的输出频率。图11和图12分别给出了输出频率在100 MHz~2.2 GHz变化时,锁相环的捕获时间tcap和稳态相对相位误差δp的变化曲线。结果表明,在100MHz~2.2GHz的输出频率范围内,锁相环的捕获时间小于2μs,相位相位误差小于0.6%.
图10 锁相环建立过程的瞬态仿真波形
图11 捕获时间(tcap)与输出频率的对应关系曲线
图12 稳态相对相位误差(δp)与输出频率的对应关系曲线
5结论
在整个电荷泵锁相环系统中,电荷泵电路起着非常关键的作用。传统的电荷泵电路,其内部存在的一些非理想因素直接影响着整个环路的工作性能,如存在电荷泄漏、电流失配、电荷共享、时钟馈通等问题,会导致压控振荡器输出频率产生抖动和相位发生偏差。
本文设计的高性能CMOS电荷泵锁相环电路,通过对传统电荷泵电路的改进,提高了充放电电流的匹配性,有效抑制了锁相环输出的相位偏差,提高了环路的稳定性。同时在环路中增加了倍频控制模块MFC和压控振荡器分段处理,有效扩展了锁频范围。该电路基于Dongbu HiTek 0.18μm CMOS工艺设计,并进行了全面的仿真验证,结果表明:输出频率在100 MHz~2.2 GHz内变化时,频率锁定时间和相位误差都得到了有效控制,验证了设计的有效性。
本文关键字:锁相环 锁相环电路,单元电路 - 锁相环电路
上一篇:PLL译码电路