您当前的位置:五五电子网电子知识电子知识资料计算机应用谈谈RFID标签天线的设计与测量 正文
谈谈RFID标签天线的设计与测量

谈谈RFID标签天线的设计与测量

点击数:7307 次   录入时间:03-04 11:35:38   整理:http://www.55dianzi.com   计算机应用

    简介:只要掌握了适合的设计方法,不仅易于达到预期的设计目标,还会使原本复杂的工作变得简单化,设计目标、设计周期、设计成本透明化。

     1 引 言

  RFID标签是RFID应用技术的主要组成部分,RFID标签的性能通常决定整个应用技术方案的有效性和实施性,因此RFID技术的实施中大多以解决RFID标签性能为主导。标签的组成可分为芯片和天线两大组成部分,标签的性能及其性能分析也是从这两个组成部分展开。然而在芯片型号定型后,天线的性能及与芯片的匹配性也就决定了标签的性能,因此天线的设计为标签设计主题部分。

  目前关于RFID标签天线的设计已有较多的文献,但很少关于标签实际应用中复杂材料环境下的设计与测量的文献。本文着重介绍了复杂材料环境条件下进行天线的设计与测量方法,并结合工程实施例加以说明。

  2  RFID标签天线设计理论

  RFID标签天线的设计通常指在给定天线工艺条件下,针对具体应用要求,在规定尺寸范围内进行设计与芯片相匹配的天线。在实际设计工程中主要解决规定的尺寸范围及工作环境件下天线的输入阻抗与芯片在工作频段达到共轭匹配。除了天线阻抗匹配设计外,还要关注天线辐射效率、极化方向及辐射方向图等参数。

  2.1天线的基础知识

  天线是一种能量转换装置,即把导行波与空间辐射波相互转换的装置。天线周围的场强分布一般都是离开天线距离和角坐标的函数,通常根据离开天线距离的不同,将天线周围的场区划分为感应场区、辐射近场区和辐射远场区。


  图2.1天线周围的场区

  图2.1(a)所示电尺寸小的偶极子天线其感应场区的外边界是λ/2π。这里,λ是指工作波长。图2.1(b)所示电尺寸大的孔径天线的辐射场区又分为近场区和远场区。

  天线一般都有两方面的特性:电路特性(输入阻抗、效率、频带宽度、匹配程度等)和辐射特性(方向图、增益、极化、相位等)。天线的测量就是用实验方法测定和检验天线这些参数特性。

  2.2标签天线设计的一般步骤

  根据设计要求(标签尺寸、工作频带、 匹配芯片、应用条件等由要求提出),确定设计方案及目标参数,建立天线模型,并对天线模型进行仿真计算。再根据仿真计算结果进行调整设计模型,以达到预期目标参数。天线的设计通常是条件确定的,即各类材料参数、结构分布均为已知,否则设计无从入手。RFID标签应用范围广,通常材料的介电常数等不能确定,天线在此环境下的输入阻抗及其他参数成为未知,这就需要通过测试确定其参数。

  2.3标签天线的等效测量

  从标签天线的一般设计方法可见,设计之关键是测试。 RFID标签天线分为HF和UHF,HF的天线通常可忽略介电影响,可直接通过电桥或阻抗分析仪测量其电感及分布电容。UHF标签天线的精确测量较难实现,通常以等效测量方式以实现。下面就介绍两种适用于UHF RFID标签设计的测量方法:

  2.3.1.谐振法测量等效介电常数

  UHF标签天线输入阻抗对材料比较敏感,当贴附在不同材料上时,其阻抗变化量通常存在较大差异。等效介电常数是指把复合材料等效成一均质材料,把复合材料对天线的综合影响等效成均质材料影响。

  如图2.2(a)一款通用型UHF RFID标签天线,其空气介质条件下仿真计算输入阻抗频率曲线如图2.2(b),使用磁探针实测空气介质条件下天线耦合功率曲线如图2.2(C)。

  图2.2(a)

  图2.2(b)

  图2.2(c)

  由图2.2(b)输入阻抗曲线图,天线输入阻抗的实部在940MHz附近达到最大值与2.2(c)中耦合功率曲线图940MHz附近最小值相对应,通常我们说天线在940MHz谐振。下面就举例通过谐振频率法来推算标签所贴附的复合板的等效介电常数。

  图2.3(a)

  图2.3(b)

  图2.2(a)所示标签天线贴附于某复合板上时,实测耦合功率曲线如图2.3(a),可以看到耦合功率最小值飘移至780MHz附近,即天线的谐振频率变为780MHz。

  按照复合板尺寸进行仿真计算,当复合板的介电常数设置为3.4时,天线输入阻抗仿真计算实部最大值落在780MHz,如图2.3(b),复合板介电常数等效为3.4。复合板等效介电常数已确定,即可按正常设计方法进行设计标签天线。

  2.3.2.缩尺模型技术应用与比例测量法

  缩尺模型技术是指在满足一定条件下,将天线按一定缩尺比例缩小(或放大),其特性参数也满足这一比例呈函数变化。缩尺模型技术通常为了便于测试,制作适于测试的模型进行等效测试,RFID标签天线的设计测量也可以直接采用缩尺模型技术进行等效测量。本文对缩尺模型测量技术原本用法不再展开讨论,本文从另一个角度展开缩尺模型技术的应用。

  我们由图2.2(a)所示天线在空气中及贴附于复合板上两种环境下其输入阻抗曲线形状相同,位置及数值存在一定逻辑关系,与缩尺模型技术存在一定的相似性。由图2.2(b)和2.3(b)可推算出贴附于复合板材上时天线的输入阻抗频率乘以1.2与空气介质时近似。即我们可以通过测量两种环境下的天线的谐振频率,得到频率变化系数为1.2。

  K=F空/F介=0.94/0.78=1.2

  假设我们要设计一款尺寸与2.2(a)所示相同的标签天线,贴附于前面所指的复合板材上,要求其特性参数与2.2(a)所示天线在空气条件下相近。按照要求调整天线结构得到如图2.4所示天线,使其空气介质条件下输入输入阻抗曲线与图2.2(b)的1.2比例相近。图2.5为图2.4所示天线仿真计算输入阻抗,基本接近1.2比例要求。

  图2.4

  图2.5

  通过比例测算法可直接确定在复杂环境下设计目标,较等效介电常数测算法更快捷,工作量减小,该方法在实际工程设计中实用性较高。

  2.4标签天线设计频带的确定

  UHF RFID因每个国家的频段标准不同,因此标签天线设计,首先要根据要求确定设计频带。应用天线等效测算法进行天线设计,天线设计频带还要乘以比例系数K。如要求设计一款用于美国,附着于常见药瓶的RFID标签。已知药瓶通过测试计算出频率变化比例K=1.19,因美国频率段标准为902-928MHz,

  所以确定设计频带为:

  FMin=Fmin标×K=902×1.19=1073MHz

  Fmax=Fmax标×K=928×1.19=1104MHz

  即设计频带为1073-1104MHz,只要使天线在这个频带的特性参数达到目标值却可。

  应用天线等效测算法进行天线设计,可以省去较多仿真计算工作,特别是明确在简单条件(纯天线)下的频带,这会使原本复杂的计算简单化。

  2.5动态阻抗匹配的设计

  芯片在未开启状态下通常可等效成容阻电路,即电容电阻并联电路。如一款芯片标称值为0.85PF,2KΩ,则其输入阻抗为

  Z=(jR/ωC)/( R+1/jωC)=(1-jωCR2)R/[1+(ωCR)2]

  芯片输入阻抗曲线如图2.6。

[1] [2] [3]  下一页


本文关键字:测量  标签  计算机应用电子知识资料 - 计算机应用

《谈谈RFID标签天线的设计与测量》相关文章>>>