您当前的位置:五五电子网电子知识单片机-工控设备嵌入式系统-技术基于低成本单芯片微处理器的高稳健性破损玻璃检测器解决方案 正文
基于低成本单芯片微处理器的高稳健性破损玻璃检测器解决方案

基于低成本单芯片微处理器的高稳健性破损玻璃检测器解决方案

点击数:7586 次   录入时间:03-04 11:48:07   整理:http://www.55dianzi.com   嵌入式系统-技术

图 4:高级软件流程

  活动检测仅通过比较 ADC 输入值与零点两侧的预设阈值来从噪声中区别出真正的破损信号。如前所述,撞击是接近 300 Hz 的低频分量。既然撞击分量仅出现在玻璃撞破损的初始阶段,那么只需过滤最初传送进来的少数几个信号样本即可。该过滤工作由剪切频率为 350 Hz 的数字 低通滤波器 (LPF) 来完成。先将过滤后的样本累加、取平均值,然后再与预设的能量阈值进行比较。如果能量超过预设阈值,则启动撞击分量和玻璃破损检测算法。为了在不影响其工作效率的前提下缩小数字 LPF 的尺寸,针对初始样本的采样频率非常低,仅保持在 4 kHz。不过,该部分算法采用剪切频率为 2 kHz 的AAF(而非剪切频率为 20 kHz的常规 AAF)。

  玻璃破损检测算法比撞击检测更复杂,分为两部分:信号分析 1 (SA1) 和信号分析 2 (SA2)。SA1 是处理的第一阶段,一旦检测到撞击就会对每个样本进行分析。在 SA1 阶段选用的是 20 kHz 的AAF,ADC 采样频率骤然提升至 40 kHz。SA1 阶段将执行信号平均、跨零检测和峰值检测,耗时 60 毫秒,完成了约 2,400 个样本分析。SA1 完成后,即启动 SA2 完成整个信号分析过程。图 5 显示的是 SA1 期间的信号表示图,而图 6 显示的是实际的软件流程。

信号分析 1 的信号表示图

图 5:信号分析 1 的信号表示图

信号分析 1 的软件流程

图 6:信号分析 1 的软件流程

  传送进来的信号样本 p(n) 在首先通过简单的移动平均滤波器降低噪声后得到 s(n)。p(n) 的信号整合只使用正样本进行,以便计算出 SA2 阶段将使用的信号能量 integ_total。s(n) 包括峰值和跨零数量。可以使用剪切频率为 的高通滤波器 (HPF) 提取传送进来的信号的高频分量,每个 p(n) 样本都要经过此类过滤。同时,只有过滤输出的正样本才能累加到结果 integ_HPF_total 中,该结果将用于 SA2 阶段。每个样本都要经过完整的 SA1 阶段,而且为了确保实时运行,必须在下一个样本 p(n+1) 到达前完成,即全部可用的 CPU 周期数仅为 CPU 频率/40 kHz。过滤通常是一个耗时的过程。为提高效率,我们在撞击检测中使用的 LPF 以及 SA1 阶段使用的 HPF 中均要采用点阵波数字滤波器 (LWDF) [1] ,并使用霍纳 (Horner) 算法 [2]。待 SA1 阶段的数据处理完(耗时 60 毫秒)后,算法即进入处理的第二个阶段 SA2。SA2 无需实时运行,图 7 给出了该阶段的运行流程。此外,SA2 完成时将确定是否真的发生了玻璃破碎事件。

信号分析 2 的软件流程

图 7:信号分析 2 的软件流程

  计算总信号能量与高通过滤信号能量之比,并将其与阈值加以比较。结果显示众多玻璃破损声音的比值都介于 1.75 ~ 14 之间。同样,还要检查峰值数量是否介于 160 ~ 320 之间,跨零数量是否介于 95 ~ 300 之间。只有满足以上三个条件,才能确定发生了玻璃破损事件。上述三个条件中只要有一项不符合要求,玻璃破损检测器就会重启并返回活动检测状态。这些阈值与范围将需要根据房间声音质量、GBD 位置以及环境噪声等加以微调。

  MCU 的实施

  德州仪器 (TI) MSP430™ MCU 平台系列产品包括各种各样的器件。MSP430F2274 是一款低功耗 MSP430 平台 2xx 系列中的 16 位 MCU [3]。该 MCU 的运行频率高达 16 MHz,其内部极低功耗的低频振荡器 (VLO) 可在室温环境下以 12 kHz 的频率运行。此外,它还具备两个 16 位定时器和一个转换速率高达 200 kHz 的集成型 10 位模数转换器 (ADC10)。该 AC10 通过配置能够与片上运算放大器(OA0 和 OA1)协同工作,满足模拟信号的调节需求。该产品在待机模式 (LPM3) 下的流耗为 0.7 μA,工作模式下的流耗为 250 μA,是电池供电应用的最佳选择。

  图 8 显示了使用 MSP430F2274 及其集成型外设的系统级方框图。由于扩音器具有 20 Hz 至 20 kHz 的通频带,MSP430F2274 只有两个集成型 OA,因此我们可以在实施中除去 20 kHz 的 AAF。尽管此举明显违背了采样理论,但实践证明这对结果无任何影响。不过,如果另一个 OA 可用的话,设置中仍可包含 20 kHz AAF。

采用 MSP430 的 GBD 系统方框图

图 8:采用 MSP430 的 GBD 系统方框图

  SP430F2274 具有两个可软件配置的运算放大器,分别标记为 OA0 与 OA1。OA0 用作增益为 7 的反相放大器来放大扩音器的输出。OA1 可通过使用 Sallen-Key 架构配置为二阶 Butterworth 类型的单位增益低通滤波器 [5]。该滤波器在 2 kHz 频率下的截止频率为 3 dB。OA1 与 OA2 的输出分别与 A1和 A13 通道实现了内部互连。

  电流消耗

  整个 GBD 的电流消耗取决于其工作与外设的开启/关闭期间所选择的低功耗模式。图 9、图 10 与图11给出了 MSP43 三种工作模式下的电流消耗分布情况。

活动检测状态下的电流消耗分布情况

图 9:活动检测状态下的电流消耗分布情况

  图 9 显示了活动检测状态下的电流消耗分布情况。器件每 2.5 ms 唤醒一次,检查活动情况并进入 20 μs 工作模式 (AM1),其间 CPU 时钟频率设为 12 MHz。如果没有检测到外部扩音器活动,器件将返回待机模式或低功耗模式 3 (LPM3)。定期从待机模式唤醒是通过使用在室温条件下时钟频率设为约 12 kHz 的片上定时器实现的。

撞击检测状态下的电流消耗分布情况

图 10:撞击检测状态下的电流消耗分布情况

  图 10 显示的是在外部扩音器上检测到明显活动且算法启动撞击检测时的电流消耗分布情况。器件进入 18 μs 的 AM1,随即配置工作在撞击检测模式下。现在,CPU 运行频率为 8 MHz,且器件进入工作模式 (AM2)。在该模式下,ADC 的采样速率配置为 4 kHz。在 32 ms 的时间内对所有样本进行信号分析,共有 128 个样本。如果未检测到有效的撞击,则器件返回12 μs 的 AM1,在此期间,器件重新启动并配置返回活动检测模式。

玻璃破损检测状态下的电流消耗分布情况

图 11:玻璃破损检测状态下的电流消耗分布情况

  图 11 显示的是有效撞击得到确认且器件进入玻璃破损检测模式的电流消耗分布情况。玻璃破损检测期间,CPU 时钟配置回 12 MHz,器件进入 ADC 采样率为 40 kHz的工作模式 (AM3)。每 60 ms 对每个样本进行一次信号分析,共有 2400 个样本。如果未检测到有效玻璃破损事件,则器件返回 4.6 ms 的 AM1,其间器件重新启动并配置返回每 2.5 ms 定期唤醒的活动检测模式。在出现有效玻璃破损事件时,器件将启动板载 LED/蜂鸣器并持续三秒钟,然后再返回活动检测模式。

  表 1 提供了各种工作模式下处于开启状态的所有外设与时钟列表 [4]。这些外设在每个阶段都是整体电流的主要消耗者。

表 1:电流与定时的重要考虑事项

电流与定时的重要考虑事项

  采用 MSP430 的 GBD 电路板由两节电流为 800mAh 的 AAA 电池供电。虽然很难估计此类应用的电池使用寿命,但在假定不出现玻璃破损事件、总流耗约 80 μA 的情况下,电池使用寿命约为 416 天。如果在当前 2.5 微秒的基础上延长用于活动检测的唤醒间隔,电池使用寿命可进一步延长;但是这会提高声音事件疏漏的几率。

  本文讨论了一种简单而稳健的玻璃破损检测器解决方案,并举例说明了玻璃破损信号的分量以及提取这些分量的方法。此外,我们还例示了软硬件要求及其 MCU 实施方案,并深入分析了此类实时实施方案的电流消耗问题。



上一页  [1] [2] 


本文关键字:成本  微处理器  解决方案  检测器  嵌入式系统-技术单片机-工控设备 - 嵌入式系统-技术

《基于低成本单芯片微处理器的高稳健性破损玻璃检测器解决方案》相关文章>>>