#define STACK_DIR stack_dir
static void
find_stack_direction ()
{
static char *addr = NULL; /* Address of first `dummy', once known. */
auto char dummy; /* To get stack address. */
if (addr == NULL)
{ /* Initial entry. */
addr = ADDRESS_FUNCTION (dummy);
find_stack_direction (); /* Recurse once. */
}
else
{
/* Second entry. */
if (ADDRESS_FUNCTION (dummy) > addr)
stack_dir = 1; /* Stack grew upward. */
else
stack_dir = -1; /* Stack grew downward. */
}
}
#endif /* STACK_DIRECTION == 0 */
(4)OS_TASK_SW()函数的定义
在μC/OS-II中,OS_TASK_SW()用来实现任务切换。就绪任务的堆栈初始化应该模拟一次中断发生后的样子,堆栈中应该按进栈次序设置好各个寄存器的内容。OS_TASK_SW()函数模拟一次中断过程,在中断返回的时候进行任务切换。GP32中可采用软中断指令SWI实现任务切换。中断服务程序的入口点必须指向汇编函数OSCtxSw()。
OS_TASK_SW()的定义:
#define OS_TASK_SW() asm swi
3.OS_CPU08.ASM文件
μC/OS-II的移植需要改写OS_CPU08.ASM中的4个函数:OSStartHighRdy()、OSCtxSw()、OSINTCtxSw()和OSTickISR()。
(1)OSStartHighRdy()函数
该函数由SStart()函数调用,功能是运行优先级最高的就绪任务。在调用OSStart()之前,必须先调用OSInit(),并且已经至少创建了一个任务。为了启动任务,OSStartHighRdy()首先找到当前就绪的优先级最高的任务(OSTCBHighRdy中保存有优先级最高任务的任务控制块-TCB的地址),并从任务的任务控制块(OS_TCB)中找到指向堆栈的指针,然后从堆栈中弹出全部寄存器的内容,运行RTE中断返回。需要说明的是,由于GP32中有512字节RAM,所以地址指针必须是16位的;而GP32中累加寄存器A为8位,所以用累加器A传递地址必须进行两次读入、输出操作。
Void OSStartHighRdy(void)
{asm
{
jsr OSTaskSwHook //调用用户定义接口函数
lda OSRunning //设置OSRunning变量,标志进入多任务模式
inca
sta OSRunning
ldx OSTCBHighRdy //取得最高优先级就绪任务TCB地址
stx OSTCBCur //保存到OSTCBCur中
pshx
ldx OSTCBHighRdy:1//保存地址的第二个字节
stx OSTCBCur:1
pulh
lda 0,X //载放就绪任务堆栈指针
psha
ldx 1,X //载入就绪任务堆栈指针第二个字节
pulh
txs
pulh //恢复索引寄存器内容
rti //中断返回,运行新任务
}}
(2)OSCtxSw()函数
OSCtxSw()是一个任务级的任务切换函数(在任务中调用,区别于在中断程序中调用的OSIntCtxSw())。在GP32上实现,可通过执行一条软中断指令SWI来实现任务切换。软中断向量指向OSCtxSw()。如果OSSched()将查找当前就绪的优先级最高的任务,若不是当前任务,则判断是否需要进行任务调度,并找到该任务控制块OS_TCB的地址,将该地址拷贝到变量OSTCBHighRdy中,然后通过宏OS_TASK_SW()执行软中断进行任务切换。在此过程中,变量OSTCBCur始终包含一个指向当前运行任务OS_TCB的指针。OSCtxSw()的汇编代码如下:
Void OSCtxSw(void)
{asm
{pshh //保存X寄存器
tsx
pshx
pshh
dx OSTCBCur //载入当前任务的TCB指针
pshx
ldx OSTCBCur:1 //载入TCB的第二个字节
pulh
pula
sta 0,x //保存当前堆栈指针
pula
sta 1,x
jsr OSTaskSwHook //调用用户定义的接口函数
lda OSPrioHighRdy //设置OSPrioCur=OSPrioHighRdy
sta OSPrioCur
pshx
ldx OSTCBHighRdy:1
stx OSTCBCur:1
pulh
lda 0,x //载入堆栈指针
psha
ldx,1,x
pulh
txs
pulh //恢复索引寄存器内容
rti //中断返回,切换任务
}}
(3)OSTickISR()函数
在μC/OS-II中,当调用OSStart()启动多任务环境后,时钟中断的使用是非常重要的。在时钟中断程序中负责处理所有与定时相关的工作,如任务的延时、等待操作等等。在时钟中断中将查询处于等待状态的任务,判断是否延时结束,否则将重新进行任务调度。
为GP32编写的函数OSTickISR()的代码如下:
void OSTickISR()void{
asm{
pshh
LDA T1SC
BCLR 7,T1SC //允许中断嵌套
}
OsintEnter(); /*标志进入中断*/
OSTimeTick(); /*调用时钟节拍函数*/
OSlntExit(); /*标志退出中断*/
Asm{
Pulh
Rti
}}
和μC/OS-II中的其他中断服务程序一样,OSTickISR()首先在被中断任务堆栈中保存CPU寄存器的值,然后调用OSIntEnter()。μC/OS-II要求在中断服务程序开头调用OSIntEnter(),其作用是将记录中断嵌套层数的全局变量OSIntNesting加1。如果不调用OSIntEnter(),直接将OSIntNesting加1也是允许的。随后,OSTickISR()调用OSTimeTick(),检查所有处于延时等待状态的任务,判断是否有延时结束就绪的任务。在OSTickISR()的最后调用OSIntExit(),如果在中断中(或其他嵌套的中断)有更高优先级的任务就绪,并且当前中断为中断嵌套的最后一层,OSIntExit()将进行任务调度。如果当有中断不是中断嵌套的最后一层,或中断中没有改变任务的就绪状态,OSIntExit()将返回调用者OSTickISR(),最后OSTickISR()返回被中断的任务。
4.OS_CPU08.C文件
μC/OS-II的移植需要用户在OS_CPU08.C中定义6个函数:
OSTaskStkInit()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskSwHook()
OSTaskStatHook()
OSTimeTickHook()
OSTaskStkInit()函数由任务创建函数OSTaskCreate()或OSTaskCreateExt()调用,用来初始化任务的堆栈。初始状态的堆栈模拟发生一次中断后的堆栈结构,按照中断后的进栈次序预留各个寄存器存储空间;而中断返回地址指向任务代码的起始地址。当调用OSTaskCreate()或OSTaskCreateExt()创建一个新任务时,需要传递的参数是:任务代码的起始地址、参数指针(pdata)、任务堆栈顶端的地址、任务的优先级。堆栈初始化工作结束后,OSTaskStkInit()返回新的堆栈栈顶指针,OSTaskCreate()OSTaskCreateExt()将指针保存在任务的OS_TCB中。
Void*OSTaskStklint(void(*task)(void*pd),void*pdata,void*ptos,INT16U opt)
{
INT16U *stk;
stk=(INT16U*)ptos; /*保存堆栈指针*/
*--stk=(INT16U)(task); /保存程序计数器内容*/
*--stk=(INT16U)(0x00); /初始化X和A寄存器内容*/
--stk=(INT16U)(0x00); /*初始化CCR和H寄存器*/
return((void*)stk);
}
其余的几个函数:OSTaskCreateHook()、OSTaskDelHook()、OSTaskSwHook()、OSTaskStatHook和OSTimeTickHook()均由用户自定义。
四、制作用户自己的项目
在为内核编写了上述与硬件相关的代码以后,用户就可以为自己的项目编写实际的代码了。在本例中,用户任务共有两个。任务1在初始化时钟中断以后,就进入了一人死循环。在这个循环里,任务1一方面以1s(秒)为周期改变并行I/O口PORTA第0个引脚的输出电压,另一方面每隔4s便向任务2发送1个信号。而任务2则始终等待任务1发来的信号,一旦收到信号,便改变并行I/O口PORTA第1个引脚的输出电压。具体的代码如下:
/*****************************************
* EXE2.C
*******************************************/
#include<hidef.h>
#include "includes.h"
Byte PORTA @0x0000; /*并口A地址$0000*/
Byte DDRA @0x0004; /*并口A方向寄存器地址$0004*/
Byte T1SC @0x0020; /*定时器控制寄存器地址$0020*/
Byte T1MODH@0x0023; /*定时器模式寄存器地址$0023*/
OS_EVENT *Semaphore;
#define TASK_STK_SIZE 64 /*任务堆栈大小64字节*/
INT8U Task1Stk[TASK_STK_SIZE]; /*定义任务1堆栈*/
INT8U Task2Stk[TASK_STK_SIZE]; /*定义任务2堆栈*/
Void Hardwareinit(void);
Void Task1(void*pdata)
{int count=0;
/*int count=0;
/*初始化定时器*/
asm{
LDA #0x50
STA T1SC
LDHX #0x0333 //设定定时器间隔100ms
STHX T1MODH
本文关键字:暂无联系方式嵌入式系统-技术,单片机-工控设备 - 嵌入式系统-技术