您当前的位置:五五电子网电子知识单片机-工控设备DSP/FPGA技术通过ARM对可编程器件进行配置的的设计和实现 正文
通过ARM对可编程器件进行配置的的设计和实现

通过ARM对可编程器件进行配置的的设计和实现

点击数:7950 次   录入时间:03-04 11:59:32   整理:http://www.55dianzi.com   DSP/FPGA技术

    基于SRAM工艺FPGA在每次上电后需要进行配置,通常情况下FPGA的配置文件由片外专用的EPROM来加载。这种传统配置方式是在FPGA的功能相对稳定的情况下采用的。在系统设计要求配置速度高、容量大、以及远程升级时,这种方法就显得很不实际也不方便。本文介绍了通过ARM对可编程器件进行配置的的设计和实现。

    1 配置原理与方式

    1.1配置原理

    在FPGA正常工作时,配置数据存储在SRAM单元中,这个SRAM单元也被称为配置存储器(Configuration RAM)。由于SRAM是易失性的存储器,因此FPGA在上电之后,外部电路需要将配置数据重新载入到片内的配置RAM中。在芯片配置完成后,内部的寄存器以及I/O管脚必须进行初始化。等初始化完成以后,芯片才会按照用户设计的功能正常工作。

    1.2配置方式

    根据FPGA在配置电路中的角色,其配置数据可以使用3种方式载入到目标器件中:

    ·FPGA主动(Active)方式;

    ·FPGA 被动(Passive)方式;

    ·JTAG 方式;

    在FPGA 主动方式下,由目标FPGA来主动输出控制和同步信号(包括配置时钟)给专用的一种串行配置芯片,在配置芯片收到命令后,就把配置数据发到FPGA,完成配置过程。在被动方式下,由系统中的其他设备发起并控制配置过程,FPGA只输出一些状态信号来配合配置过程。被动方式包括被动串行PS(Passive Serial )、快速被动并行FPP(Fast Passive Parallel)、被动并行同步PPS(Passive Parallel Serial)、被动并行异步PPA(Passive Parallel Asynchronous)、以及被动串行异步PSA(Passive Serial Asynchronous)。JTAG是IEEE 1149.1边界扫描测试的标准接口。从JTAG接口进行配置可以使用ALTEra的下载电缆,通过QUARTus工具下载,也可以采用微处理器来模拟 JTAG时序进行配置。

    2硬件电路设计

    AT91ARM9200对EP1C6配置的硬件电路示意图如图1所示。

    在配置FPGA时,首先需要将年nCONFIG拉低(至少40us), 然后拉高。当nCONFIG被拉高后,FPGA的nSTATUS也将变高,表示这时已经可以开始配置,外部电路就可以用DCLK的时钟上升沿一位一位地将配置数据写进FPGA中。当最后一个比特数据写入以后,CONFIG_DONE管脚被FPGA释放,被外部的上拉电阻拉高,FPGA随即进入初始化状态。

6
图 1 ARM配置FPGA电路原理图

    3软件设计

    本文在设计时使用Linux系统,软件编写和调试是在ADS 下。主要程序如下:



www.55dianzi.com

    statIC AT91PS_PIO pioc;

    inline void pioc_out_0 (int mask)

    {

    pioc->PIO_CODR = mask;

    }

    inline void pioc_out_1 (int mask)

    {

    pioc->PIO_SODR = mask;

    }

    inline int pioc_in (int mask)

    {

    return pioc->PIO_PDSR & mask;

    }

    inline void xmit_byte (char c)

    {

    int i;

    for (i = 0; i < 8; i++)

    {

    if (c & 1)

    pioc_out_1 (DATA0);

    else

    pioc_out_0 (DATA0);

    pioc_out_0 (DCLK);

    pioc_out_1 (DCLK);

    c >>= 1;

    }

    }

    void pioc_setup ()

    {

    pioc->PIO_PER =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

    pioc->PIO_OER =DATA0 | nCONFIG | DCLK;

    pioc->PIO_ODR =nSTATUS | CONF_DONE;

    pioc->PIO_IFER =nSTATUS | CONF_DONE;

    pioc->PIO_CODR =DATA0 | nCONFIG | DCLK;

    pioc->PIO_IDR =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

    pioc->PIO_MDDR =DATA0 | nCONFIG | DCLK;

    pioc->PIO_PPUDR =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

    pioc->PIO_OWDR =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

    }

    int pioc_map ()

    {

    int fd;

    off_t addr = 0xFFFFF800; // PIO controller C

    static void *base;

    if ((fd = open ("/dev/mem", O_RDWR | O_SYNC)) == -1)

    {

    printf ("CANnot open /dev/mem. ");

    return 0;

    }

    printf ("/dev/mem opened. ");

    base = mmap (0, MAP_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, addr & ~MAP_MASK);

   



www.55dianzi.com

    if (base == (void *) -1)

    {

    printf ("CANnot mmap. ");

    return 0;

    }

    printf ("Memory mapped at address %p. ", base);

    pioc = base + (addr & MAP_MASK);

    return 1;

    }

    int main (int argc, char **argv)

    {

    FILE *file;

    char data[16];

    int nbytes, i;

    if (argc != 2)

    {

    printf ("%s ", argv[0]);

    return -1;

    }

    file = fopen (argv[1], "r");

    if (!file)

    {

    printf ("File %s not found. ", argv[1]);

    return -1;

    }

    if (!pioc_map ())

    return -1;

    pioc_setup ();

    pioc_out_0 (nCONFIG);

    for (i = 0; i < 10000 && pioc_in (nSTATUS); i++) { }

    if (i == 10000)

    {

    printf ("nSTATUS = 1 before attempting configuration. ");

    return -1;

    }

    pioc_out_1 (nCONFIG);

    for (i = 0; i < 10000 && !pioc_in (nSTATUS); i++) { }

    if (i == 10000)

    {

    printf ("Timeout waiting for nSTATUS = 1. ");

    return -1;

    }

    while ((nbytes = fread (data, sizeof (char), sizeof (data), file)) > 0)

    {

    if (pioc_in (CONF_DONE))

    {

    printf ("CONF_DONE = 1 while transmitting data. ");

    return -1;

    }

   



www.55dianzi.com

    if (!pioc_in (nSTATUS))

    {

    printf ("nSTATUS = 0 while transmitting data. ");

    return -1;

    }

    for (i = 0; i < nbytes; i++)

    xmit_byte (data[i]);

    }

    for (i = 0; i < 10000 && !pioc_in (CONF_DONE); i++)

    {

    if (!pioc_in (nSTATUS))

    {

    printf ("nSTATUS = 0 while transmitting data. ");

    return -1;

    }

    pioc_out_0 (DATA0);

    pioc_out_0 (DCLK);

    pioc_out_1 (DCLK);

    }

    if (i == 10000)

    {

    printf ("Timeout waiting for CONF_DONE = 1. ");

    return -1;

    }

    return 0;

    }

    4 结论

    本文给出了基于ARM的FPGA加载配置软件实现。这种方法充分利用了ARM的速度快、灵活的特点,节省了开发成本,又满足了一些特殊的系统设计要求。本方法也适用于其它的微处理器。

    参考文献

    [1]王诚,吴继华,范丽珍,薛宁,薛小宁.ALTEra FPGA/CPLD设计(基础篇) 人民邮电出版社 2005.7 PP187~190

    [2] 王艳,李秀华 基于单片机的现场可编程门阵列的配置 微计算机信息 2005,13,104-105。




本文关键字:暂无联系方式DSP/FPGA技术单片机-工控设备 - DSP/FPGA技术

《通过ARM对可编程器件进行配置的的设计和实现》相关文章>>>