摘要:针对Xilinx FPGA在航天应用中的可行性,文章分析了Xilinx FPGA的结构以及空间辐射效应对FPGA的影响,结合实际工程实践给出了提高其可靠性的一有用办法和注意事项,如冗余设计、同步设计、自检等。表明配置信息的周期刷新和三模冗余设计是减轻单粒子效应的有效方法。
关键词:可编程逻辑门阵列;总剂量效应;单粒子翻转;单粒子闩锁;单粒子功能中断;单粒子烧毁:单粒子瞬
引言
空间辐射环境中的带电粒子会导致航天器电子系统的半导体器件发生单粒子效应,严重影响航天器的可靠性和寿命,其中高能质子和重离子是导致单粒子效应的主要因素。必须对航天器用电子元器件的单粒子效应进行评估,采取一定的抗辐射加固措施,提高其可靠性。因此,空间辐射的单粒子效应研究具有重要意义。
基于SRAM的FPGA在航天领域受到极大关注。Xilinx公司的FPGA相继在MARS2003 Lander(JPL)XQR4062XL:Controlling PyrotechnICs、MARS2003 Rover(JPL)XQVR1000:Motor Control、GRACE(NASA、XQR4036XL:Sensor等任务中成功应用之后,国外航天界对Xilinx FPGA的应用兴趣大增。我国相关领域对XilinxFPGA的航天应用正处在研究阶段,对其中亟待解决的可靠性设计问题研究相对较少,本文根据作者在某卫星载荷设备信号处理器中的实践对Xilinx FPGA(以下简称FPGA)的可靠性设计技术进行了研究。
1 Xilinx FPGA介绍
Xilinx SRAM型FPGA主要由以下几部份组成,图1所示为Virtex II FPGA的结构图。
(1)配置存储器(Configure Memory):FPGA可以看作配置存储器和受其控制的可配置逻辑资源两层的叠加。配置存储器是FPGA内部的一个大容量存储器,控制着可配置逻辑资源,如布线资源、可编程逻辑资源、数字时钟等逻辑功能。配置存储器的失效将造成FPGA功能的持久失效(直至重新配置成功)。
(2)布线资源(Routing Resource):布线资源是FPGA内部逻辑功能单元互联的通道,它将用户设计的各个逻辑功能模块连在一起。
(3)可编程I/O(Programmable I/O):FPGA的输入输出接口,通常情况下I/O脚可以设置成输入、输出、高阻态、双向I/O。
(4)可编程逻辑单元(CLB:Configurable LogicBLOCk):可编程逻辑功能单元是FPGA的细胞,通过它可以完成各式各样的逻辑功能。
(5)块存储器(Block Select-RAM)和乘法器(Multiplier)等:FPGA内部集成的硬件存储器和乘法器,用以实现快速的数字运算。
(6)数字时钟管理模块(DCM:Digital ClockManager):FPGA内部的时钟管理单元。通过它可以对输入时钟进行倍频、分频处理,同时还可以减小时钟的抖动,提高时钟的驱动能力。
目前FPGA的工艺水平从Virtex系列的220mm发展到Virtex II的150mm,一直到现在Virtex 4系列高密度FPGA的90nm,虽然抗总剂量效应能力在不断增强,但是随着器件的核电压的降低、门数的剧增,单粒子效应会越来越明显。因此FPGA上述组成部分,如配置存储器、CLB和块存储器的抗辐射可靠性设计越来越重要。
TMR:Throughput LogIC
简单复制(Three copies of the original design-Logic and I/O)
TMR Tradeoffs(TMR折中方案)
设计时可以根据实际情况对关键部分使用部分三倍冗余法。全部逻辑和敏感端口三模冗余有时需要权衡做出折衷,如下表。
www.55dianzi.com
FPGA的可编程I/O也容易受到辐射粒子的影响产生SEU和SEL(目前只发现三态脚在发生错误时可以变成输出脚,还没有发现I/O发生方向转换(即输入变成输出或者输出变成输入)。输入输出脚的三倍冗余设计是一种非常有效的方法,尤其是对因为配置存储器发生单粒子效应的情况下,但是这种方法需要占用三倍的I/O资源,所以设计的时候需要慎重考虑。
我们在FPGA内分多个区域,分别采用TMR设计,减小出错概率。
3.3 防止关键电路SET引起的抖动
SET在时钟电路或者其他数据、控制线上容易产生短脉冲抖动,这种抖动有可能会造成电路的误触发或者数据锁存的错误。为了减少这种短脉冲抖动的影响,在设计时可采用如下方法:
(1)内部复位电路尽可能使用同步复位;
(2)控制线尽可能配合使能信号线使用;
(3)组合逻辑数据在锁存时尽可能配合使能信号。
也就是说,尽量在触发逻辑中配合另一个使能条件,这样就可以屏蔽由SET产生的大部分抖动。
3.4 系统监控与重配置(Configuration Scrubbing)
在某些设计寿命不是很长的卫星中,COTS器件的应用已经成为可能,在类似的信号处理或者星务管理平台中,采用一种金字塔形体系结构可以大大提高平台的可靠性,有效地抵抗各种辐射效应引起的可恢复故障。
Actel高可靠性的反熔丝FPGA负责从非易失大容量存储器中读取Xilinx FPGA的配置数据对其进行配置,然后在运行期间,对最容易受辐射效应影响的配置存储器按列进行读操作,然后与标准数据进行比对,对出现错误的列进行局部重配置。
另外,也可以通过对回读数据进行CRC校验来检验配置存储器是否出现错误。
对配置存储器的回读校验和重配置(或局部重配置)是一种有效的抵抗辐射效应的方法。
本文关键字:技术 DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术
上一篇:基于FPGA的时统模块可靠性设计