关键词: 数字图象处理 字符识别 车牌识别 分类匹配
车牌自动识别系统能将输入的汽车图象通过处理识别,输出为几个字节大小的车牌字符串,无论在存储空间的占用上还是与管理数据库相连方面都有无可比拟的优越性。在大型停车场,交通部门的违章监测(电子警察)、高速公路及桥梁的收费站管理等方面,有着广泛的应用前景。
1 车牌定位及预处理
将汽车图象文件以Raw格式文件输入计算机后,计算机将车牌部分从整幅图象中抽取出来,实现车牌定位。设定门限值为127,设定检测阈值为16。然后对图象自上而下逐行扫描,若某一行的0→1和1→0变化次数大于该阈值则假设其为待测车牌最低点,继续逐行扫描直至0→1和1→0变化次数小于8的情况出现。将该值假设为待测车牌最高点。若最高点与最低点之差大于15则认为目标已检测到,否则继续进行扫描。如果未检测到符合上述条件的目标,则自动调整门限值重复以上的操作。直到找到目标为止。
利用二值图象在竖直方向上的投影作为特征,从左至右寻找目标的中心点坐标。考察以前所得的目标高度作为边长的方形窗口内的竖直方向投影之和(即所包含的象素值为1的象素点的个数),若该值小于经验阈值(经多次试验该阈值取为150)则视为无文字信息的背景部分,若该值首次大于阈值则视为待识车牌的左边界部分;之后,若当投影和首次由大变小时跳出循环,则取该窗口的中点横坐标为目标中心点。以目标中心点为基准向右,以高度为所得目标高度、宽度为30的窗口再次统计象素值为1的象素点个数,若该值首次小于经验阈值16则视为已到目标右边界,并取该点坐标为目标最右点的坐标。对目标最左点坐标的确定同理可得。
由于车牌的高宽比固定,将之作为一种目标评定标准,考虑变形因素,若高宽比不处于区间(0.2~0.6)
本文关键字:技术 DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术
上一篇:基于结构的指纹分类技术