(1)初始化下位机初始化首先要把学习过程训练好的θji、σji、η的值,通过PLc指令把其赋给存储单元;其次要对后续Y值计算过程中用到的常数赋值,同样也要赋给存储单元;最后,要把请求数据传送的标志位VB703置位。并发送给上位机。
(2)接收采集值 首先接收上位机的采集值,接着把采集的值赋给即将进行Y值运算的储存地址。同时将请求数据传输标志位VB703复位,并传送给上位机,要求停止继续向下位机传输采集值。
(3)输出y值计算利用上一步提供的采集数据、初始化步骤中的权值和模糊神经网络算法,以PLC为平台进行计算,将计算所得值赋给外接输出设备的存储地址.同时根据现场情况控制请求数据接收标志位VB703是否置位。
(4)VB703判断若VB703=16#FF,那么启动新的数据接收,即跳转到第二步。如果VB703≠16#FF,则跳转到结束。但要知道的是这两种结果是工作人员根据现场情况在第3步中已确定的。
5 结论
通过对模糊神经网络学习过程和现场工作过程的PLC程序的仿真,结果表明:学习过程的PLC程序,利用模糊神经网络自学习能力,当不满足性能指标时,系统则根据梯度下降策略自动的调整权值、隶属函数的和,直到输出满足要求为止。现场工作过程PLC程序,在采集值确定情况下.能够得出确定的输出值,达到预期效果。
本文关键字:网络 其它PLC应用,plc技术 - plc应用 - 其它PLC应用
上一篇:基于VC的PLC数据采集管理系统