变频调速及其控制技术发展趋势
点击数:7159 次 录入时间:03-04 12:02:40 整理:http://www.55dianzi.com 应用案例
PWM控制是变频调速系统的核心,任何控制算法几乎都是以各种PWM控制方式实现。九十年代以来的产品,正弦形PWM(SPWM)调制方法已逐步为以下方式取代: 快速电流跟踪PWM技术 快速电流跟踪型PWM逆变器为电流控制型的电压源逆变器,一般采用滞环电流控制,使三相电流快速跟踪指令电流。该逆变器硬件简单,电流控制响应快,兼有电压和电流控制型逆变器的优点,普遍用于PMSM伺服系统和异步电动机矢量变换控制系统。 磁链跟踪控制PWM技术 这种方法把逆变器和电动机视为一体,以三相对称正弦波电压供电时交流电动机理想的圆形磁场为基准,用逆变器不同开关模式所产生的实际磁链矢量来跟踪基准磁链园,由跟踪结果决定逆变器的开关模式,形成PWM波。由于磁链的轨迹是靠空间矢量的选择来实现,因此又称电压空间矢量法。 直接转矩的智能控制PWM技术 常规的直接转矩PWM技术无法区别转矩、磁链的非常大的偏差和相对小的偏差,这将造成电机启动期间系统的停滞。而采用智能控制中的模糊控制,可以通过定子磁链的空间位置,由一系列偏差的正大,正小等模糊语言,根据模糊规则推出逆变器的开关模式,使系统性能改善。 双PWM控制技术 交一直一交电压型逆变器是目前最广泛使用的型式,但常对电网构成谐波污染。目前双PWM控制技术的研究非常活跃,即由PWM整流器和PWM逆变器组成的双PWM变频器
无须任何附加电路就可使电网侧的输入电流接近正弦波,使系统的功率因数约为1,彻底消除网侧的谐波污染,并实现了四象限运行。 4.矢量控制技术和直接转矩控制技术的发展 矢量变换控制技术 自1971年矢量变换技术控制理论建立以来,以转子磁场定向,采用矢量变换的方法,实现异步电动机转速和磁链控制的完全介耦。从而使异步电动机具有和直流电动机一样优良的控制性能。该技术得到了广泛地应用。 无速度传感器矢量变换控制技术 矢量变换控制系统在低速尤其是在零转速时的性能以及速度传感器的安装和维护影响了控制系统的性能、可靠性、价格和简便性。因而无速度传感器矢量变换技术成为研究的热点,受到学术界和产业界的高度重视。该技术的关键是如何获取速度信号,常用的方法有:从电机的基本议程式导出速度方程式进行计算:根据自适应控制理论,选择合适的参考模型,利用自适应法识别速度;转子空间信息法——利用高频注入电流,辩识出转子的位置和速度,国外已有相关产品,调速范围可达1:75。 直接转矩控制的低速模型的建立 本模型的建立,还存在许多困难,尤其是定子电阻的识别。 还需要进一步研究和完善的课题有: 磁链的准确估计和观测;无速度传感器的实现;电机参数的在线识别;低转速、零转速下转矩的控制;多电平逆变器高性能控制的策略上一页 [1] [2]
本文关键字:技术 应用案例,变频技术 - 应用案例