您当前的位置:五五电子网电子知识电工技术电工文摘20kV配电电压等级的应用与节能减排 正文
20kV配电电压等级的应用与节能减排

20kV配电电压等级的应用与节能减排

点击数:7793 次   录入时间:03-04 11:46:43   整理:http://www.55dianzi.com   电工文摘
摘要:节能降耗是国家“十一五”规划纲要的目标之一,应积极将节能的新科技、新措施利用到实际中去。20kV配电电压等级已在一些国家得到应用,实践证明20kV配电网络能够有效减少线损率,节能效果明显。本文从电网远景建设规模、可靠性、电压质量、经济性和节能方面对浙江某规划区采用10kV配网模式和20kV配电模式进行规划比较,并对采用20kV提出相关的建议。
  
关键词:节能减排 20kV 节约型电网
  
  1前言
  
  国家“十一五”规划纲要明确提出,到2010年全国单位GDP能耗和主要污染物排放总量分别比2005年降低20%和10%。这是贯彻科学发展观和建设和谐社会的重大举措,也是加快建设资源节约型、环境友好型社会的迫切需要。因此,贯彻落实科学发展、节约发展的工作思路,扎实做好节能降耗工作,是义不容辞的社会责任。目前,加强线损管理,落实降损措施,已经成为供电企业经营管理的重要内容之一。
  
  现阶段,国际上许多国家采用了20kV等级的配电网络,理论和实践均证明在一定负荷密度的条件下,以采用相同导线输送相同功率电能,20kV供电线路的有色金属耗量可减少50%,节约建设投资约40%,降低电能损耗50%以上,可为用电容量数百kV安到几万kV安的客户提供灵活、经济的接入方案,供电能力和供电可靠性得到提高,有效改善客户端的电压质量。2007年,根据国家电网“关于推广20kV电压等级的通知”的精神,江苏省率先在省内13个市推广2OkV电压等级试点供电项目。近几年,其他省份也在积极开展20kV的相关工作。
  
  与传统的10kV配电网相比,20kV配电网电压不但可以增加供电能力,有效减少变电站和线路布点密度,方便客户接入,大用户效益突出等优点,而且节能降损效益可观,环保效益突出。据测算,输送同等功率,2OkV供电线路的有色金属耗量可减少50%,节约建设投资约40%等。然而,针对于20kV配电电压等级的优越性来说,目前国内20kV电气设备生产能力并不完善,存在建设成本相对较高、运行经验少、与其他区域电网配合困难等问题,因此还未得到广泛应用。但是在发展快速、负荷密度定位高,而且存在很多新区和准新区的开发区域,局部采用20kV是存在可能的,应积极进行论证分析。在此情况下,选定浙江某城市区块,根据该区块发展的阶段和负荷水平,开展了20kV和10kV规划比较研究。

2规划比较思路
  
  为了寻求中压10kV和20kV配电网的规划比较,对不同方案进行技术经济分析比较,主要从电网远景建设规模、可靠性、电压质量、经济性和节能方面进行比较。电网远景建设规模主要比较远景变电站建设规模、占地面积、高中压线路出线规模。可靠性分析对各个不同方案计算平均用电有效度指标(ASAI)、系统平均断电频率指标(SAIFI)和系统平均断电持续时间指标(SAIDI),用这些指标来比较不同方案的可靠性高低。电压质量分析根据中压配网线路负荷情况,通过理论潮流计算得到中压线路的最低电压。经济性分析是将变电站和高压线路的综合投资、中压线路和配变的投资按等年值法折算到年值,再加上运行费用,计算得出年最小单位负荷总费用,然后比较不同方案的投资大小。
  
  3 10kV和20kV规划比较
  
  3.1 比较方案确定

  
  为了使规划方案具有可比性,考虑到规划区域未来为城市高档中心区域,假设高中压均采用电缆线路,变电站布点已在布局规划中确定,通道走廊也已有初步设计,确定对以下四个方案进行对比分析:
  
  方案一:变比220/110/10kV,主变容量3×50MVA,电缆网;
  
  方案二:变比220/110/20kV,主变容量4×80MVA,电缆网;
  
  方案三:变比220/110/20kV,主变容量3×63MVA,电缆网;
  
  方案四:变比220/110/20kV和220/110/10kV,主变容量选取3×50MVA、3×63MVA、3×80MVA,电缆网的混供方案。
  
  3.2规划区域现状简介
  
  该区域目前公用网络电压等级构成为220/110/10kV。至2007年底,共有4座110kV变电站向规划区电网提供电源,主变共8台,主变容量总计286MVA;10kV配电线路23条,线路总长度179.48km。
  
  3.3电网远景建设规模比较
  
  有关该区域远景110kV变电站建设规模见表3-1。由表中可以看出,方案一为220/110/10kV电网方案,新建6座110/10kV变电站,数量最多;方案二、方案三均为220//110/20kV电网方案,区别在于方案二选取了4×80MVA的大容量变电站,故变电站数量最少;方案四为10kV和20kV混合电网方案,变电站数量与方案三相同。结合四个方案变电站数量及占地情况进行变电站占地估算,见表3-2。从表3-2的统计结果可知,和20kV相关的二、三、四方案的变电站占地均小于10kV方案一的占地规模。

表3-1远景各方案变电站建设规模
   方案电压等级变电站最终规模变电站新建个数变电站总容量(MVA)方案一110/103×506900方案二110/204×803960方案三110/203×634756方案四110/10110/203×803×633×504729
  表3-2110kV变电站用地规模

   方案变电站建设情况变电站单位占地面积(m2)合计占地面积(m2)最终规模座数4×80MVA3×63MVA3×50MVA)方案一3×506----600036000方案二4×8039000----27000方案三3×6347700--30800方案四3×803×633×50490007700600028700
  对于110kV线路远景建设规模见表3-3。从表中可以看出,方案二新建高压线路6条,线路长度34.72km,均比其它三个方案少,主要由于方案二采用大容量变电站,站点最少,故所需高压线路最少。
  
  表3-3远景各方案110kV线路规模
   方案电压等级变电站最终规模线路条数线路长度(km)方案一110/103×50849.59方案二110/204×80634.72方案三110/203×63846.33方案四110/10110/203×803×633×50847.45
  中压线路远景建设规模见表3-4。从表中可以看出,无论从中压线路数量和长度比较,方案二和方案三均优于方案一和方案四,对于20kV电网方案,随着变电站容量的增大,变电站的供电范围加大,中压线路的总长基本上也随之逐渐增大,从而导致了中压线路投资和网损也逐渐增大,这是采用大容量变电站的一个不利之处。

表3-4远景各方案中压线路规模
   方案电压等级导线型号线路条数线路长度(km)方案一110/10YJV

[1] [2] [3]  下一页


本文关键字:节能减排  电工文摘电工技术 - 电工文摘