上述方案中以1)的保护效果最佳,能充分发挥TVS响应速度极快、可承受瞬态高能量脉冲之优点,方案2)次之。鉴于压敏电阻器(VSR)的标称击穿电压值(U1mA)离散性较大,响应速度也比TVS慢很多,在开关电源中一般不用它构成漏极箝位保护电路。
有源箝位DC/DC变换器的电路如图5所示。因电路中使用了有源器件MOSFET(V4)做箝位管,故称之为有源箝位电路。CC为箝位电容,V3为主功率开关管。由图5可知,当V4导通时因uGS3=0而使V3关断。当V4关断时uGS3使V3导通,就对由变压器漏感产生的尖峰电压起到了箝位作用。
图5 有源钳位DC/DC变换器的电路
3 16.5W同步整流式DC/DC电源变换器的设计
下面介绍一种正激、隔离式16.5WDC/DC电源变换器,它采用DPA-Switch系列单片开关式稳压器DPA424R,直流输入电压范围是36~75V,输出电压为3.3V,输出电流为5A,输出功率为16.5W。采用400kHz同步整流技术,大大降低了整流器的损耗。当直流输入电压为48V时,电源效率η=87%。变换器具有完善的保护功能,包括过电压/欠电压保护,输出过载保护,开环故障检测,过热保护,自动重启动功能、能限制峰值电流和峰值电压以避免输出过冲。
由DPA424R构成的16.5W同步整流式DC/DC电源变换器的电路如图6所示。与分立元器件构成的电源变换器相比,可大大简化电路设计。由C1、L1和C2构成输入端的电磁干扰(EMI)滤波器,可滤除由电网引入的电磁干扰。R1用来设定欠电压值(UUV)及过电压值(UOV),取R1=619kΩ时,UUV=619kΩ×50μA+2.35V=33.3V,UOV=619kΩ×135μA+2.5V=86.0V。当输入电压过高时R1还能线性地减小最大占空比,防止磁饱和。R3为极限电流设定电阻,取R3=11.1kΩ时,所设定的漏极极限电流I′LIMIT=0.6ILIMIT=0.6×2.50A=1.5A。电路中的稳压管VDZ1(SMBJ150)对漏极电压起箝位作用,能确保高频变压器磁复位。
图6 16.5W同步整流式DC/DC电源变换器的电路
该电源采用漏-源通态电阻极低的SI4800型功率MOSFET做整流管,其最大漏-源电压UDS(max)=30V,最大栅-源电压UGS(max)=±20V,最大漏极电流为9A(25℃)或7A(70℃),峰值漏极电流可达40A,最大功耗为2.5W(25℃)或1.6W(70℃)。SI4800的导通时间tON=13ns(包含导通延迟时间td(ON)=6ns,上升时间tR=7ns),关断时间tOFF=34ns(包含关断延迟时间td(OFF)=23ns,下降时间tF=11ns),跨导gFS=19S。工作温度范围是-55~+150℃。SI4800内部有一只续流二极管VD,反极性地并联在漏-源极之间(负极接D,正极接S),能对MOSFET功率管起到保护作用。VD的反向恢复时间trr=25ns。
功率MOSFET与双极型晶体管不同,它的栅极电容CGS较大,在导通之前首先要对CGS进行充电,仅当CGS上的电压超过栅-源开启电压〔UGS(th)〕时,MOSFET才开始导通。对SI4800而言,UGS(th)≥0.8V。为了保证MOSFET导通,用来对CGS充电的UGS要比额定值高一些,而且等效栅极电容也比CGS高出许多倍。
SI4800的栅-源电压(UGS)与总栅极电荷(QG)的关系曲线如图7所示。由图7可知
QG=QGS+QGD+QOD(1)
式中:QGS为栅-源极电荷;
QGD为栅-漏极电荷,亦称米勒(Miller)电容上的电荷;
QOD为米勒电容充满后的过充电荷。
图7 SI4800的UGS与QG的关系曲线
当UGS=5V时,QGS=2.7nC,QGD=5nC,QOD=4.1nC,代入式(1)中不难算出,总栅极电荷QG=11.8nC。
等效栅极电容CEI等于总栅极电荷除以栅-源电压,即
CEI=QG/UGS(2)
将QG=11.8nC及UGS=5V代入式(2)中,可计算出等效栅极电容CEI=2.36nF。需要指出,等效栅极电容远大于实际的栅极电容(即CEI>>CGS),因此,应按CEI来计算在规定时间内导通所需要的栅极峰值驱动电流IG(PK)。IG(PK)等于总栅极电荷除以导通时间,即
IG=QG/tON(3)
将QG=11.8nC,tON=13ns代入式(3)中,可计算出导通时所需的IG(PK)=0.91A。
同步整流管V2由次级电压来驱动,R2为V2的栅极负载。同步续流管V1直接由高频变压器的复位电压来驱动,并且仅在V2截止时V1才工作。当肖特基二极管VD2截止时,有一部分能量存储在共模扼流圈L2上。当高频变压器完成复位时,VD2续流导通,L2中的电能就通过VD2继续给负载供电,维持输出电压不变。辅助绕组的输出经过VD1和C4整流滤波后,给光耦合器中的接收管提供偏置电压。C5为控制端的旁路电容。上电启动和自动重启动的时间由C6决定。
输出电压经过R10和R11分压后,与可调式精密并联稳压器LM431中的2.50V基准电压进行比较,产生误差电压,再通过光耦合器PC357去控制DPA424R的占空比,对输出电压进行调节。R7、VD3和C3构成软启动电路,可避免在刚接通电源时输出电压发生过冲现象。刚上电时,由于C3两端的电压不能突变,使得LM431不工作。随着整流滤波器输出电压的升高并通过R7给C3充电,C3上的电压不断升高,LM431才转入正常工作状态。在软启动过程中,输出电压是缓慢升高的,最终达到3.3V的稳定值。
4 结语
在设计低电压、大电流输出的DC/DC变换器时,采用同步整流技术能显著提高电源效率。在驱动较大功率的同步整流器时,要求栅极峰值驱动电流IG(PK)≥1A时,还可采用CMOS高速功率MOSFET驱动器,例如Microchip公司开发的TC4426A~TC4428A。
本文关键字:技术 电工文摘,电工技术 - 电工文摘