您当前的位置:五五电子网电子知识电子知识资料主板-硬盘-存储-插卡采用闪存技术的微控制器的典型应用分析 正文
采用闪存技术的微控制器的典型应用分析

采用闪存技术的微控制器的典型应用分析

点击数:7895 次   录入时间:03-04 11:57:28   整理:http://www.55dianzi.com   主板-硬盘-存储-插卡

  如今,有多种存储技术均具备改变嵌入式处理领域格局的潜力。然而,迄今为止还没有哪一种技术脱颖而出成为取代微控制器(MCU)中闪存技术的强劲竞争者,直到FRAM的出现这种情况才得以改变。铁电随机存取存储器(FRAM)是一种非易失性的独立型存储技术,本文将论述FRAM的主要技术属性,同时探讨可充分展现FRAM优势的具体用例。

  FRAM是什么

  FRAM为非易失性存储器,其功耗、可写入次数、读/写速度均与常用的静态RAM(SRAM)很相似。存储在FRAM单元中的信息对应于铁电晶体的极化状态,即使在电源移除之后亦能保存其内容。正是这一特点使FRAM拥有了真正的非易失性。而且,与闪存单元的编程相比,晶体极化所需的电能消耗相对较低,因此FRAM写入操作的功耗天生就比闪存的要低。

  下面介绍的是目前几种采用了闪存技术的微控制器的典型应用。我们从中可以了解到,采用基于FRAM的MCU(而不是基于闪存的MCU)是如何实现成本、能耗与效率优化的。

  数据录入

  典型的数据录入应用(比如:温度数据录入器)能以介于1Hz至1000Hz之间的速率进行采样。 我们知道闪存中单个字节的写入时间约为75μs。相比之下,FRAM技术的写入速率则可达到大约每125ns一个字节。这种写入速度比闪存快了将近1000倍!我们考虑一下:当应用达到某个闪存段的末端并需要移动至下一个闪存段时,会突然出现20ms的延迟,以等待完成一个段擦除。

  这种擦除延迟并不适用于FRAM,因为它不需要在写入操作之间对FRAM字节进行预擦除。每个闪存段20ms的延迟似乎没那么令人望而却步,但当我们计算出其对最大写入速度的显着影响之后就不这么看了。为了方便本文的讨论,假定写入的内存区块的长度为512字节。一个闪存区块每秒钟可进行26次写操作(包括每写入512字节时完成一个擦除周期所需的时间)。这为我们提供了13kBps的总速度。

  与之相比,一个512字节FRAM区块的写入速度则可超过8MBps。并不是每一种应用都要求如此高的写入速度,假设您的目标应用只需要每秒1kB的写入速度,那么采用闪存技术的MCU将在7% 时间里处于运行状态以执行写入操作。然而,FRAM MCU则仅需0.07%的运行时间即可完成该项任务,这使得MCU能在99.9%的时间里保持待机状态,从而显着地节省能耗。

  能量收集

  当今的许多应用都专注于使用更加清洁的绿色能源,这些能源取自诸如阳光、振动、热量或机械变化等自然资源。此类应用依赖于小的突发能量(其能以短的时间间隔提供电能),而MCU通常是在失去电源前的最后时刻决定可执行多少行代码。基于闪存的应用非常重视功耗,这不仅是由于闪存存取时的平均功耗较高,同时也是因为闪存写入过程中的峰值功耗较高所致。

  该峰值功耗主要是由于使用充电泵而引起的,最高数值可达到7mA,因而使得非易失性写入操作在能量收集领域几乎是行不通的。而采用FRAM时没有充电泵;于是,不存在大电流的写入操作。对FRAM进行写操作时的平均功耗与FRAM读操作或采用FRAM的执行操作相同(即:未损害非易失性写入操作,从而使FRAM成为适合能量收集应用的真正灵活的可选方案)。

  RFID标签

  射频识别(RFID)标签开始逐渐出现在许多场所:商店货架(用于显示商品价格)、各类会议(胸卡)以及工业自动化车间(用于标明和识别传送带上的物体)。部分此类应用每天需要进行多达100次的存储器写入操作。

  假设一个典型寿命为1万次写入/擦除的闪存字节。为了实现10万次写入/擦除的寿命,应用将需要为每个数据字节留出10个闪存字节,从而以高冗余度为代价来满足寿命要求。

  相比之下,一个FRAM存储器字节的寿命可达1015次写入/擦除,这是一个闪存字节的1000亿倍。对于那些要求几百万次写入/擦除之高寿命的应用,FRAM的寿命指标是目前可用的其他嵌入式非易失性存储器技术所无法比拟的。

  手持式测量

  在对掉电现象高度关注的手持式测量中,血糖测量便是一个例子。在由于使用了电量耗尽的电池而导致供电故障的情况下,血糖计需要保存一个时间戳、保存电源发生故障时的读数、甚至还可能在关断之前执行几项数学函数运算。

  我们设想一种采用电荷耗尽之电池且基于闪存的测量应用,电源电压的下降可被近似为:在 0.01秒的时间里至300mV左右。在这段时间中,可写入多达8万个FRAM字节,而相比之下闪存字节则只能写入8千字节左右。然而,这还没有把闪存写入操作的高峰值电流及平均电流要求等因素考虑在内,这种大电流需求将迅速消耗电池电量,最终导致电池的后备供电能力显着下降。

  电源故障过程中系统后备的另一个用例是电能计量,此时,能耗数据必需保存在非易失性存储器之中,直到供电恢复为止。在此类场合中,系统后备期间的电能使用情况是至关紧要的,因为后备电池电源的期望使用期限长达10年之久。

  对于种类繁多、数量庞大的应用而言,FRAM不仅提供了差异化、同时亦可能是唯一可行的选项。如需对基于FRAM的MCU进行测试驱动,不妨试用由德州仪器公司提供的MSP430FR57xx系列,样片可免费获得。

  FRAM能减少系统成本、提高系统效率和降低复杂性,同时具有远低于闪存的功耗。如果您现有的基于闪存的MCU应用存在能耗、写入速度、使用寿命或电源故障后备方面的局限,那么或许这正是转向FRAM的契机。

  1.jpg

  图1:FRAM可实现连续的超低功耗数据录入,并支持超过15万年的连续数据录入(对比之下,采用闪存时则需不到7分钟的时间)。

  2.jpg

  图2:一体化 - FRAM微控制器可提供最大的读取、写入、功耗与存储器优势。




本文关键字:技术  控制器  主板-硬盘-存储-插卡电子知识资料 - 主板-硬盘-存储-插卡

《采用闪存技术的微控制器的典型应用分析》相关文章>>>