您当前的位置:五五电子网电子知识通信技术综合通信技术采用DDC和DUC技术实现的大带宽DRFM及其基本原理 正文
采用DDC和DUC技术实现的大带宽DRFM及其基本原理

采用DDC和DUC技术实现的大带宽DRFM及其基本原理

点击数:7232 次   录入时间:03-04 11:45:20   整理:http://www.55dianzi.com   综合通信技术

    本文介绍了采用DDC和DUC技术实现的大带宽DRFM及其基本原理,并在Matlab中进行了理论仿真,使用QUARTusⅡ完成了对整个系统及内部模块的建模,最后在Modelsim中进行了整个系统的功能仿真,为今后DRFM技术的研究提供理论和技术支持。
    随着超高速、超大规模集成电路的出现,数字下变频(Digial Down Converter,DDC)技术和数字上变频(Digital Up Converter,DUC)技术得到快速发展,使得DRFM系统的瞬时带宽得以提升,其中,采用正交调制解调技术的DRFM,瞬时的带宽可达到600 MHs以上,基本可覆盖一般雷达信号的带宽,甚至覆盖一般雷达信号的所有工作带宽。由此,使得雷达对抗技术进入一个新的发展空间。

1 大带宽DRFM基本原理
   
基于DDC和DUC技术的大带宽,DRFM的基本原理是:由雷达天线接收战场的雷达信号,将接收到的雷达信号,经过高速的ADC变换器进行采样量化,转变为中频数字信号,然后经过DDC把ADC变换器输出的中频数字信号变为零中频信号,并将其进行快速存储。再将高速ROM中的数据读出,对其进行多普勒(Doppler)频移变换,使得最后输出信号比原信号多—个多普勒频移量,从而使输出信号可以模拟假目标信号的多普勒效应。再将多普勒频移后的信号经过DUC做上变频处理,将零中频信号搬到中频,其中DUC过程的各项参数设置与DDC中的各项参数完全一致,以保证能够完全恢复出中频信号的频带和相位信息,最后将输出的数字中频信号经过DAC变换器恢复为射频模拟信号,并送给发射天线进行发射。基于该原理的DBFM基本结构如图1所示。

c.JPG

   

2 大带宽DRFM信号仿真
   
系统将雷达接收到的射频雷达信号,经过高速A/D变换器采样量化后得到中频数字信号,送入基于多相滤波原理实现的DDC模块,得到基带I、Q两路信号。然后与复信号u.jpg进行复乘法运算,实现信号的多普勒频移,将得到的信号经过DUC模块处理后上变频为中频信号,再经过DAC输出,从而实现整个DRFM系统的功能。
    设输入中频信号fIE对应的模拟信号x(t)=a(t)cos[2πfot+φ(t)]=a(t)cos[2π(f1+f2)t+φ(t)],假设振幅a(t)=1,初相φ(t)=0,中频信号的载波频率f1=750 MHz,基带信号频率f2=50MHz。中频模拟信号对应的信号频谱如图2所示。

d.JPG

   
    图2显示输入信号频率为800 MHz,前面200 MHz的频谱是模拟信号对应复频率-800 MHz,经过采样率为fs=1 000 MHz的采样,频谱进行周期性搬移后,在正半轴产生的镜像频率。中频信号经过DDC模块后的频谱如图3所示。

e.JPG

   
    如图3所示,将中频信号经过数字下变频(DDC)模块处理以后,得到的I、Q两路的信号对应的复信号的频谱已经为基带信号50 MHz。
    假设DDS模块产生的正交信号频率fd=62.5 MHz,DDC模块输出的基带信号经过多普勒频移后,得到第一组I、Q两路信号对应复信号的频谱如图4所示。

f.JPG

   
    图4所示,频率从基带的50MHz搬移到了112 5 MHz,完成了预想的结果。
    将得到的信号进行数字上变频(DUC)处理,即经过与DDC的相反过程后,得到输出信号的频谱如图5所示。

g.JPG

   
    图5所示,信号频率从112.5 MHz搬移到了862.5 MHz,而载波频率为750 MHz,基本与理论一致。即输入的800 MHz中频信号经过DRFM系统后转变为862.5 MHz,得到的结论与实际预想相同,完成了DRFM系统的功能。



www.55dianzi.com


3 大带宽DRFM在FPGA中的设计与实现
    根据上述DRFM系统的基本结构,在FPGA开发平台QUARTusⅡ中实现其功能,主要完成对系统及内部模块的建模,并在Modelsim中对整个系统进行了功能仿真,验证了设计的正确性。在FPGA中实现的基于DDC和DUC大带宽DRFM的整体模块如图6所示。

h.JPG

   
    如图6所示,在高性能FPGA中主要实现的是数字下变频,多普勒调制和数字上变频3部分。图中的第一模块实现数字下变频和多普勒调制,第二模块实现数字上变频。以下分别介绍3个部分在FPGA中的具体实现。
3.1 FPGA中DDC模块的实现
   
设计中采用了基于多相滤波结构的数字正交下变频(DDC),首先介绍基于多相滤波结构的DDC算法。
设输入中频信号为x(t)=a(t)cos[2πfot+φ(t)],按以下采样频率fs对其进行采样,由带通采样原理可知,m=0,1,2,…。其中m取值满足fs≥2B的最大正整数。
    得到的采样序列为
    j.JPG
    即x(2n)(-1)n和x(2n+1)(-1)n两个序列分别是同相分量xI(n)和正交分量xQ(n)的2倍抽取序列。根据抽取原理可知,如果xI(n)和xQ(n)的数字谱宽度<π/2,则其两倍抽取序列xI(2n)和xQ(2n+1)可以无失真表示原序列。根据傅里叶变换性质可以推出
    k.JPG
    可知两者的数字谱恰好相差一个延迟因子*,在时域上即是相差0.5个采样点。为弥补这种时域的非对齐,需要引入两个时延滤波器加以校正。这两个滤波器需满足
    l.JPG
    基于多相滤波的数字正交下变频实现过程如图7所示。

m.JPG

   
    由上述算法,可以推导出宽带DDC的多相滤波高效结构如图8所示。

n.JPG

   
    输入中频数字信号为x(n),依次经过一个采样点的延迟后分别进行4倍抽取,得到4路并行信号,依次为a(n)、b(n)、c(n)、d(n)。将得到的4路并行信号,分别经过一个采样点的延迟后再分别进行2倍抽取,得到8路并行信号,依次为x0(n)、x1(n)、x2(n)、x3(n)、x4(n)、x5(n)、x6(n)、x7(n)。由式(3)可知,x(n)的偶数项对应其同相分量I路信号,奇数项对应其正交分量Q路信号。于是,对以上的8路信号进行处理,得到4路并行的I路信号xI0、xI1、xI2、xI3和4路并行的Q路信号xQ0、xQ1、xQ2、xQ3,其中xI0=x0(n)、xI1=x2(n)、xI2=x4(n)、xI3=x6(n)、xQ0=x1(n)、xQ1=x3(n)、xQ2=x5(n)、xQ3=x7(n)。将得到的4路并行的I路信号与4路并行的Q路信号分别通过满足式(5)的时延滤波器,使得I路信号和Q路信号在时域上对齐。经过时延滤波器后,得到I路4路并行信号xII0(n)、xII1(n)、xII2(n)、xII3(n),和Q路4路并行信号xQQ0(n)、xQQ1(n)、xQQ2(n)、xQQ3(n)。

[1] [2]  下一页


本文关键字:技术  带宽  综合通信技术通信技术 - 综合通信技术

《采用DDC和DUC技术实现的大带宽DRFM及其基本原理》相关文章>>>