谐波是电力系统的一大公害,消除谐波污染,把谐波含量控制在允许范围内,已经成为主管部门和用电单位的共同奋斗目标。而要消除电网中的谐波,首先就要对谐波进行准确测量,谐波测量工作已经越来越引起人们的关注[1]。A/D转换电路是电力系统谐波测量中必不可少的一个重要环节,是电力系统谐波测量系统前端的核心。
FPGA因具有强大的逻辑控制能力、高速的运算能力、灵活的可编程性,已经越来越多的被用于各种数字系统。在FPGA内部一般都内嵌有可配置的高速RAM、PLL、LVDS、LVTTL以及硬件乘法累加器等DSP模块。用FPGA模块来实现数字信号处理可以很好地解决并行和顺序性的矛盾,直至速度问题,而且其灵活的可配置性,使得FPGA构成的DSP系统非常易于修改,易于测试及硬件升级。在QUARTusII开发软件中用Verilog HDL硬件描述语言能够很容易进行逻辑电路设计,并且在FPGA中可以实现用硬件进行配置,可有效降低软件运行时间和软件设计复杂程度[2]。因此,FPGA非常适合在电力系统谐波测量系统中作为核心器件。
本文中采样电路选用AD73360,在QuartusII中用Verilog HDL硬件描述语言实现了AD73360及VGA与FPGA的接口设计,最后通过实验验证了设计的正确性。
1 系统总体方案
系统以ALTEra公司的DE2开发板为平台,系统框图如图1所示。信号采集单元核心器件为电压、电流互感器。互感器将待测高压、大电流信号线性转换为合适的微弱电压信号,该微弱电压信号经信号调理电路放大为合适的电压信号,经低通滤波电路滤除高于2 500 Hz的高频噪声,然后送到A/D转换单元进行A/D转换,转换后形成数字信号存储到存储器中,再送到FFT处理单元进行快速傅里叶变换,变换后得到的数据再储存到存储器中,再进行一系列相关运算,如:谐波电压含有量、谐波电流含有量、各次谐波电压含有率、各次谐波电流含有率等,最后经VGA进行显示出波形和相关数据。
2 AD73360的配置[3]
2.1 A/D电路设计
A/D电路如图2所示。A/D电路可分为以下三个部分。
本系统集成了前端采集、中间处理和后续显示功能模块,充分利用了FPGA的逻辑资源和NiosII处理器的强大功能,较好地实现了预期目标。与同类系统相比,具有开发时间短、程序可移植性强和成本低等优势。该系统作为电力系统谐波分析系统的一部分,在数据采集及预处理方面已经取得较好的效果,后期将进一步研究基于FPGA内部逻辑结构的FFT实用算法。
参考文献
[1] 肖雁鸿,毛筱,等.电力系统谐波测量方法综述[J].电网技术,2002,26(6):61-64.
[2] 吴茂存.基于FPGA的电力系统谐波检测[D].济南:山东科技大学,2002.
[3] Analog DevICes,Inc.AD73360 Data Sheet.1999.
[4] 孙国银.AD73360在电量测量系统中的应用[J].中国测试技术,2007,23(2):70-73.
[5] 潘松.SOPC技术实用教程[M].北京:清华大学出版社2005.
[6] 张志刚.FPGA与SOPC设计教程[M].西安:西安电子科技大学出版社,2007
本文关键字:数据采集 DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术