摘要:基于卷积码的编译码原理,使用VHDL语言和FPGA芯片设计并实现了(2,1,3)卷积码编译码器。其中译码器设计采用“截尾”的Vite-rbi译码算法,在支路量度计算、路径量度和译码路径的更新与存储以及判决与输出等环节的实现中采取了若干有效措施,节省了存储空间,提高了设计性能。最后通过仿真验证了设计的正确性与合理性。
关键词:FPGA;卷积码;编译码器;Viterbi译码器:VHDL
由于卷积码具有较好的纠错性能,因而在通信系统中被广泛使用。采用硬件描述语言VerilogHDL或VHDL和FPGA(FiELD Programmable Gate Array——现场可编程门阵列)进行数字通信系统设计,可在集成度、可靠性和灵活性等方面达到比较满意的效果。
文献以生成矩阵G=[101,111]的(2,1,3)卷积码为例,介绍了卷积码编码器的原理和VerilogHDL语言的描述方式;文献采用VerilogHDL语言,对(2,1,7)卷积码的Viterbi硬判决译码进行了FPGA设计。本文基于卷积码编/译码的基本原理,使用VHDL语言和FPGA芯片设计并实现了(2,1,3)卷积码编码器及其相应的Viterbi译码器,通过仿真验证了设计的正确性。
1 (2,1,3)卷积码编码器的设计
1.1 (2,1,3)卷积码编码器的原理
卷积码编码器通常记作(n,k,N),对应于每段k个比特的输入序列,输出n个比特;这n个输出比特不仅与当前的k个输入比特有关,而且还与以前的(N-1)k个输入比特有关。(n,k,N)卷积码编码器包括:一个由Ⅳ段组成的输入移位寄存器,每段有k级,共Nk位;一组n个模2加法器;一个由n级组成的输出移位寄存器。整个编码过程可以看成是输入序列与由移位寄存器和模2加法器连接方式所决定的另一个序列的卷积。
对于(2,1,3)卷积码编码器来说,n=2,k=1,N=3,即每输入1个信息比特时经编码后产生2个输出比特,输出比特不仅与当前的1个输入比特有关.而且还与以前的2个输入比特有关。(2,1,3)卷积编码器框图如图1所示。
由图可以看出,输出为:
1.2 设计思路
编码器为串入串出结构。这里一共定义4个端口信号,它们分别是:
当编码使能start为0时不进行编码,并将状态state清零;start为1时进行编码,此时每2个时钟周期输入一个新的信息比特,同时状态信号改变,输出2位已编码比特,即每个时钟周期输出1位已编码比特。
在设计中。将框图简化为“加”(支路量度计算)、“比选”(路径量度和译码路径的更新与存储)以及定时与控制三部分。
2.3 设计思路
2.3.1 端口及信号定义
输入输出端口为:
www.55dianzi.com
其中“比前路径长度”中下划线前的数字代表该路径最后停在的状态,下划线后的数字代表是由哪个状态转移过来的。如果是“0”则代表由状态号较小的状态转移过来的那条路径,反之如果为“1”则代表由状态号较大的状态转移过来的那条路径;“选后路径长度”和“译码路径”的序号表示该路径最后停在的状态号。图3为维特比译码过程的网格图。
2.3.2 定时与控制
由时钟控制,每个时钟输入一位,每两个时钟输出一位,称为一个译码周期。在每个译码周期的前一个时钟周期内完成“加”,此时译码状态为“0”;在后一个时钟周期内完成“比和选”,译码状态为“1”。
2.3.3 支路量度计算
由于(2,1,3)卷积码的形式已经固定,因此,可以事先把支路量度表做好,如表1所示。译码器工作时可根据输入通过查表得到“比前路径长度”的增加值,暂存到addi_j中,而后统一加入“比前路径长度”chni_j中。
2.3.4 路径量度和译码路径的更新与存储
在到达同一状态的两条路径中选取路径长度较小的作为幸存路径,即在chnk_0和chnk_1中选择较小的存入rlengthk(k=0~3)。
由于每个状态译码路径的最后一位在每一步中是不变的,均是"0101”(状态0~3),因此更新译码路径时只需将选中的译码路径向高位移一位后存储即可。即进行如下判断:
1)对于新路径0的判断,如果chn0_0<=chn0_1则选择旧路径0,否则选择旧路径2;
2)对于新路径1的判断,如果chn1_0<=chn1_1则选择旧路径0,否则选择旧路径2;
3)对于新路径2的判断,如果chn2_0<=chn2_1则选择旧路径1,否则选择旧路径3;
4)对于新路径3的判断,如果chn3_0<=chn3_1则选择旧路径1,否则选择旧路径3;
其中chn0_0,chn0_1,chn1_0,chn1_l,chn2_0,chn2_1,chn3_0,chn3_1已由上一步得出。
www.55dianzi.com
2.3.5 判决与输出
译码深度为10,译码的输出只需将译码路径的最高位中出现较多的一位输出,当“0”和“1”的个数相等时输出任意一个。由图4所示的卡诺图可得,译码输出的逻辑表达式为:
dataout=(route0 (9) and routel (9)) 0r (route2 (9) and route3 (9))
2. 3.6 译码初始化
由于刚开始译码的第一步和第二步,译码路径并未完全展开,“加-比-选”与后面的步骤略有不同。因此设置一个译码步骤计数器step,对译码前两步的“加”进行单独处理,而不改变“比选”部分。
本文关键字:译码器 DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术