源时钟域中需要向目标时钟域传递的信号,不论是控制信号还是数据流信号,统一组合成STD_LOGIC_VECTOR类型的数据,在刷新同步信号到来时置写使能WR_EN有效,在源时钟域的时钟上升沿,若FIFO未满,则将数据写入FIFO。目标时钟域接收数据时判断FIFO是否为空,若非空,则将数据读出,还原。使用异步FIFO可以进行连续、高数据率的数据传递,功能可靠,使用简单。但受片内资源的限制,不能大范围使用,而且源时钟域和目标时钟域的时钟频率不能相差太大,否则会造成数据拥堵,增加资源消耗。
2 实际工程应用
本文设计目标系统是基于XC2V3000的极紫外探测器主控系统,该系统外部输入时钟为100 MHz,系统内共包含位置解码算法模块的驱动时钟100 MHz,总线控制模块的工作时钟50 MHz,姿态调整机构位置传感器采样时钟12.5 MHz,LVDS数据传输驱动时钟5 MHz,RS-422通信模块工作时钟500 kHz,以及姿态调整机构驱动频率400 Hz,跨越高速、中速、低速和甚低速4个时钟域。根据本文提出的方案,将DCM和同步计数分频器生成的时钟全部通过主接入点导入全局时钟网络,使这些时钟均能覆盖整个芯片面积。位置解码算法模块100 MHz时钟域与总线控制模块50 MHz时钟域之间的信号传递使用异步FIFO,频率在50 MHz以下的时钟域使用时钟鉴相法与50 MHz传递信号,相互之间不直接传递。
经过后仿真测试和硬件调试的验证,证明了本文提出的混合时钟域解决方案确实可行,有助于提高集成度,并能极大提高系统的可靠性。
参考文献
[1] 尼启良,刘世界,陈波.极紫外位置灵敏阳极光子计数成像探测器研究[J].中国光学与应用光学,2009(1):35-39.
[2] 杜文志.星载FPGA内时序电路设计与时钟控制技术分析[J].航天器工程,2008(5):58-63.
[3] Virtex-II Platform FPGA User Guide.www.xilinx.com,2007.
[4] 冼友伦,卢护林,苏涛.基于FPGA的多通道高速实时信号处理系统设计[J].电子技术应用,2005(3):98-101.
本文关键字:暂无联系方式DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术
上一篇:FPGA 电路动态老化技术研究