2. 3. 4 缩放模块
视频缩放包括放大( up scaling ) 和缩小( downsca ling )两个方面,而进行缩放的基本方法为空间插值。下式为对图像进行插值的一般数学表达式,其中g ( i,j)为缩放图像中待插值点的像素值,f ( k,l)为原始图像中坐标( k,l)处的像素值,h( i- k,j - l)为插值基函数。
插值基函数的选择可以有很多种,通常有二维的矩形函数、线性函数、三次函数及S inc 函数等,它们分别对应于最近邻插值、线性插值、三次插值以及理想插值(实际中利用S inc函数截断后插值) ,其插值效果为从差到好排列,但实现难度也依次提高。在实际处理中是利用滤波器来实现插值基函数,而且由于这些插值的对称性,可以将其分解为横向和纵向插值两部分分开进行,如二维线性插值函数对应双线性插值( Bilinear Interpo lation),三次函数对应双三次插值( B ICub ic Interpo lation) ,对于Sinc 插值函数实际中为多相位插值( Po lyphase Interpo lation)。本文使用多相位插值法实现图像缩放,实际上在4 ? 4领域大小内进行多相位插值和三次插值几乎是一样的,只是对应插值函数值略微不同。多相位插值法是通过对输出点对应原图中的领域进行Lanczos2 函数移相插值来产生输出点的。如图11所示。
图11 Lanczos2 函数
www.55dianzi.com
假设g ( u,v )为经缩放后输出图像中一点,其还原到原图像的最近点为f ( i,j) 且两者在原图中相差( x,y )的坐标,则输出点g ( u,v)的数学表达如下,从其可以看出实际上分为两步实现分别进行垂直滤波和水平滤波。
其中有关系式: i = ( u ×W in ) /W out,j = ( v ×H in) /H out; x = ( u × W in)% W out,y = ( v ×H in)%H out。W in 和Wout分别为缩放前后的图像宽度,H in和H out分别为缩放前后的图像高度。图12为4 ×4领域水平垂直相位,其中的水平相位值分别为PH 0,PH 1,PH 2,PH 3,垂直相位值分别为PV0,PV1,PV2,PV3。只要根据上述关系式求得x,y 值就能获得8 个相位值,就能实现多相位滤波。
图12 4×4 领域水平垂直相位
图13为本文设计的图像缩放器中滤波器部分框图,其中的垂直水平查找表里分别存放着4个不同相位的Lanczos2 函数值。
图13 图像缩放器中的滤波器
2. 4 视频DAC
视频编码到模拟R、G、B 由视频DAC 芯片ADV7123,它内部有三独立通道10 bit高速DAC,如图14所示为其功能图及其系统作用。
图14 ADV7123系统图
3 系统电源设计
电源的可靠性是电子系统设计成败的关键。在设计电源时,在保证电源的可靠性的基础之上需要综合考虑电源电路的效率与体积,此系统需要0. 9 V,1. 2 V,1. 8 V,2. 5 V,3. 3 V,5 V 共6种电源。
LM2737输出电流最大为5 A,效率高达90%,封装为SO IC,体积小。DDR2的VTT 与VRef的0. 9 V电压由DDR 参考终端电压通用芯片TPS51100 转换而来。
图15 电源设计框图
4 结束语
本文采用C yc lone III的EP3C1*84C6器件及相关的视频编解码芯片设计视频格式转换系统,实现了普通电视信号到较为通用的VGA 接口信号的转换,同时通过对视频信号的缩放等处理增大视频分辨率。另外,采用FPGA作为核心视频处理器件,使得系统对视频制式的支持具有很好的灵活性。
本文关键字:格式转换 DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术