3 波形仿真与性能分析
波形仿真选用的输入信号为
x(n)=Xxexp[j×(03+2x127xnxπ)/256]
式中。X根据测试的需要分别取18 bit信号的最大值和达到80 dB信噪比所需的最小值13,n的取值范围为0:255。设计工具选用VHDL93版硬件描述语言,在QuartusⅡ4.1平台上进行逻辑综合和时序分析,把仿真结果保存为*.tbl文件格式。在MATLAB中,读取*.tbl文件,并与MATLAB的计算结果进行比较。由于8级运算都作了右移1位的处理,所以实际结果比用MATLAB的计算结果缩小256倍。把MATLAB的计算结果缩小256倍与0uartusⅡ4.1的计算结果比较,如图4所示。图中,左上图为原始序列,右上图为用MATLAB计算的结果,右下图为用FPGA计算的实际结果。在左下图中,把二个结果进行局部放大,MATLAB的计算结果用实线表示,Quartus4.1的仿真结果用“+”表示。可以看出二组结果的吻合性非常好,验证了程序的正确性。仿真采用60 MHz系统主频,在系统进入稳定状态之后(经过38.34μs),每完成1次256点FFT所用时间为4.26μs。对EPlS25器件资源占用情况为:逻辑单元使用15%,内部存储器使用18%,专用DSP使用62.5%。虽然专用DSP块使用较多,但是逻辑单元使用得很少,可以用逻辑单元来构成18x18的乘法器和专用DSP一起完成更多的并行乘法运算。这说明系统还具有很好的可扩展性,要完成更多点数的FFT,只需增加相应蝶形运算的级数即可。
从结果可以看出,由于运算中采用有效措施防止误差和溢出,在最大数据运算时没有溢出,而且最终运算结果的误差小于10-9。在用达到80 dB信噪比所需最小数据进行运算时,也有很好的分辨率。
4 结束语
本文讨论了微波接力机中FFT模块的设计与实现过程。全部电路设计已经过功能仿真、逻辑综合、时延分析并成功下载到FPGA中投入实践应用。实践应用表明用Stratix系列FPGA实现FFT的速度快、稳定性高、易于扩展。在微波接力通信,特别是在接力机对窄带干扰快速识别的应用中有很大的优越性。
本文关键字:暂无联系方式DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术