您当前的位置:五五电子网电子知识单片机-工控设备DSP/FPGA技术第六讲 DSP在雷达信号处理中的应用 正文
第六讲 DSP在雷达信号处理中的应用

第六讲 DSP在雷达信号处理中的应用

点击数:7939 次   录入时间:03-04 11:52:37   整理:http://www.55dianzi.com   DSP/FPGA技术

       (2)采用总线结构实现数据交互是常见的一种数据传输与互连技术,可以分为专用总线和通用总线两类。专用总线应用较少,而通用总线如PCI系列、VME系列等,由于是工业标准,可以得到很多厂商产品和软硬件技术支持,有着广泛的应用。现有的高性能DSP都开始提供通用总线接口,例如TMS320C64系列、PowerPC系列都提供了PCI或者PCI-X总线接口,Sharc系列DSP若需要进行简单的逻辑转换便可直接与PCI总线连接。DSP借助总线接口,通过PCI桥可以实现多DSP总线互连,共享彼此的资源,使DSP之间可以直接进行数据交换。通用总线结构存在的主要问题是:当系统总线存在多个设备时,每个设备共用总线带宽,需要通过仲裁分时占用总线,造成每个设备可使用的总线带宽不足。通用总线提高性能的办法是增加总线位宽,提高频率,流水处理,切分传输。

       (3)交叉开关数据传输与互连技术是一种动态互连技术,采用通道开关或者ASIC芯片实现,可以动态地改变拓扑结构,使用户在通信过程中能方便地实现点对点的数据传输,提高通信带宽。该技术是目前发展最快的高速数据传输与互连技术,部分DSP如MPC85/86系列提供了Rapidio接口,可以直接实现芯片以及板间互连。部分针对DSP的桥接芯片也提供了交叉开关互连接口,如StarLink接口等。

       (4)专用数据传输与互连技术是指一些DSP等芯片独有的数据传输技术。典型代表是Sharc系列DSP使用的LINK技术。LINK技术可以使所有DSP之间形成一个立方体连接形式,实现一种动态的全互联网络;通过中间结点的接力,使得任意两DSP均可互通。因此,基于Sharc系列DSP构建的处理板,既可以实现板内互连,又可以实现板间互连。但缺点是采用了存储转发式的操作,延时大,降低了数据传输的效率。

       由于各种传输与互连技术都各有优缺点,雷达信号处理器在设计中通常采取总线+专用数据传输与互连技术,或者总线+交叉开关等方式,构成DSP、模块或者设备之间的数据传输和系统互连的通道,保证系统良好的可靠性和可扩展性。

       存储技术

       随着芯片制造技术的发展,通用DSP采用多内核技术,工作主频越来越高,运算速度不再是雷达信号处理的瓶颈。在一些新体制雷达中,如SAR成像处理器和相控阵雷达信号处理器中,需要进行海量数据存储和处理,存储技术就成为实时处理的关键技术之一。 



www.55dianzi.com        雷达 信号处理 器的数据存储载体分为动态存储器(DRAM)、静态存储器(SRAM)、双口存储器(Dual-Port RAM,简称DPRAM)、先进先出存储器(FIFO)等。此外,硬盘和磁带也可用于原始数据和处理结果的存储,例如SAR成像处理系统的存储子系统设计。FIFO、DPRAM和SRAM通常用于局部存储器设计,存储空间有限,而SDRAM具有容量大、成本低、速度快的优点,通常作为数据矩阵的存储介质。SDRAM对于连续地址存储空间的访问效率非常高,但是在地址跳变的随机访问情况下,大量的翻页操作使得访问效率降低数倍。例如在SAR成像处理中,需要对数据矩阵转角存储。一般情况下,数据矩阵在存储器中以行为单位顺序存放,当 DSP 读取矩阵列时,由于进行非连续地址访问,严重降低了SDRAM的读写效率,直接影响实时成像。

       当前,高性能DSP,如TS201/101和TMS320C6000系列,都提供了SDRAM控制器,实现了DSP对海量数据的高效管理,但是,相对于新一代雷达对存储能力和访问速度的需求还存在一定的差距。许多公司提供了更先进的接口技术,例如TUNDRA公司的Tsi108接口桥芯片就提供了2GB空间、133MHz的DDR SDRAM控制器。此外,还可以通过FPGA开发DDR SD RAM和DDR II SDRAM控制器,使DSP访问SDRAM效率得到成倍提高。

       雷达信号处理器软件的开发

       软件是系统的灵魂,硬件是系统的基础。雷达信号处理系统软件开发不同于一般的软件,其核心是基于DSP的嵌入式软件,主要任务不是对数据执行变换,而是在各种硬件设备上执行相应的算法,完成相应的功能,而计算机仅仅提供人机交互界面,进行系统监控和显示结果。这种软件系统的开发采用了分层方法,把软件分为底层软件和顶层软件两个相对独立的部分。其中底层软件完成 DSP 等硬件资源的控制和相应的算法,顶层软件运行于底层软件之上,完成面向用户的应用级设计。这种层次化的软件结构,可以提高整个软件系统的可维护性、可移植性、通用性;而且由于软件开发人员只需要考虑自己层次的开发内容,有效提高了软件代码的开发效率。下面重点讨论底层软件的开发。

       底层软件包含嵌入式软件,主要完成 DSP 寄存器、存储器的操作,控制多 DSP 间的通信,以及处理在多个 DSP 之间的分配等任务。需要研究、解决底层控制软件与硬件平台的最优适配问题,包括多 DSP 之间的通信协议、多 DSP 的控制信令设计、处理任务的粒度划分、处理任务的动态调度和分配等。底层软件非常强调时间性、并发性、活动性、异构性、反应性,一般采用数据流驱动。当雷达信号处理系统的规模越来越大,软件高度复杂,任务调度和分配频繁,这时需要采用实时操作系统完成上述软件功能。当前市场上的实时操作系统主要有Wind River SystEMS公司开发的Virtuoso、VxWorks,QNX系统软件公司的QNX,美国微软公司的Windows CE等,其中Vxworks得到了广泛的应用。

       VxWorks是一个实时的多任务系统,由一个体积很小的内核以及一些可以根据需要进行定制的系统模块组成。微内核支持实时系统的一系列特征,包括多任务、中断支持、任务抢占式调度和轮转调度。微内核设计使VxWorks缩减了系统开销并加速了对外部事件的反应。VxWorks内核只占用了很小的存储空间,并可高度裁减,保证了系统能以较高的效率运行。VxWorks具有专门为实时嵌入式系统设计开发的操作系统内核,提供了高效的实时多任务调度、中断管理,实时的系统资源以及实时的任务间通信。因此,在DSP软件开发过程中,用户可根据需要对VxWorks相对独立的目标模块进行裁剪和配置,然后自动链接,完成系统的功能。因此,对于多DSP系统采用VxWorks开发,可以提高效率,并有效地保证软件的安全性、可靠性和可移植性。


       结束语

       近年来,国内外雷达技术研究进展迅猛,各种新体制雷达相继问世,对雷达信号处理器的处理能力、存储能力、可扩展性、软件开发以及数据传输与互连能力等各个方面都提出了更高的要求。DSP技术的采用,增强了数据处理能力,提高了系统的性能指标,促进了现代雷达信号处理技术的发展。尤其是各种新型的DSP产品,对软件、外围接口技术和互连技术的良好支持,使雷达信号处理平台系统结构、拓扑结构得到优化,系统的可扩展性得到提高。随着DSP的开发和应用的深入,DSP将在信息与信号处理、通信与信息系统、自动控制、雷达、军事、航天和航空等许多领域得到更加广泛的应用。

上一页  [1] [2] 


本文关键字:暂无联系方式DSP/FPGA技术单片机-工控设备 - DSP/FPGA技术

《第六讲 DSP在雷达信号处理中的应用》相关文章>>>