您当前的位置:五五电子网电子知识单片机-工控设备DSP/FPGA技术用DSP控制器整合马达控制和功率因数校正 正文
用DSP控制器整合马达控制和功率因数校正

用DSP控制器整合马达控制和功率因数校正

点击数:7506 次   录入时间:03-04 11:33:32   整理:http://www.55dianzi.com   DSP/FPGA技术

    对很多新电子产品必须具有接近1的功率因数和无失真电流输入波形。通常的AC-DC变换器采用简单电容器的二极管桥整流器从ac线路汲取功率。在离线设备中的输入电流波形用一个整流器/电容器输入滤波器提供窄脉冲。因此,由于电流波形的高谐波失真,使得功率因数很不理想。

    用著名的带单电源开关的升压拓扑结构能改善输入功率因数。电源开关控制能量流。当开关接通时,电流建立在升压电感器中,同时二极管保持关断。当电源开关断开时,存在电感器中的能量经二极管对dc线路电容器进行充电。另外可控制电感器电流跟踪所想要的电压。对于功率因数校正,通常控制电感器电流跟踪整流电压,因此ac端电流将与ac线电压同相。然而,基于正向馈电控制和电流测量的方法不是一种简单的实现方法。测量整流器输出电压以得到输入线电流的波形信息。全波整流线电压馈送到模拟通道。输入电压用电阻分压器调整。

    另外测量dc线电容器电压可获得输入电流大小的信息。同样,用电阻分压器把此电压馈送到另一个模拟通道。

    这两个电压确定升压控制开关的工作占空率。占空率可写为:

    DACtual=Krec×Vin×DMAx

    式中dactual是升压电源开关的占空率,dmax是最大允许的占空率,krec是整流器输出电压传感器的增益。

    DC总线电压电平确定最大允许占空率dmax。

    经典的PI方法可得到dmax。Vref取决于不同的应用并且总是大于输入线电压的峰值。模/数变换同步于相应功率因数校正的PWM通道。图6示出不同控制环路的定时图。

    升压变换器的大小远远小于各种无源滤波器。可以预料,有效的功率因数校正将满足将来各种严格的电源性能调整。

实验

    250W实验板已被制作用来实现上面所提到的所有功能。带风扇的3相感应马达(1/3HP,4极)做为负载被连接到板上。输入是标准的ac线电压(115V,60Hz)。工作频率在0~60Hz之间变化。3相倒相器和升压变换器的功率开关用IRF840功率MOSFET。升压电感器在150mH左右。软件用汇编语言编写,使用小于4KW的程序空间。控制器的片上闪存可存储程序。

    由20KHz SVPWM产生无失真相位电流。表1示出在不同工作频率下的功率因数电平。

    检测电流波形的某种失真。升压电感器在较高的工作频率会处于饱和状态而导致电流失真。然而,马达相位电流和线到线电压完全是无失真的。

    软启动特性也包含在软件中。在启动期间驱动以预先确定的速率斜波上升。通过斜波上升或下降曲线,进行速度指令的突然改变。

    表2列出对于不同软件模块的DSP带宽的使用率。很显然,多功能整合不能利用DSP带宽的100%,因此,更先进的算法可实现应用要求。

表1 用升压拓扑结构改善功率因数校正频率(Hz)没有功率因数校正有功率因数校正输入ACDC总线pfc输入ACDC总线pfc25110V145V0.62110V203V0.9834141V0.69202V0.9850139V0.71196V0.97

表2  DSP带宽的使用率

DSP功能US%BWV/Hz描述1.23.0间隔向量PWM产生4.310.7轴逼度测量5.714.2速度PI环控制器(32位积分器)1.43.5功率因数校正4.819.0通信(命令解释程序)1.43.5

结语

    新型低成本DSP控制器正在成为成本敏感应用的一种有前途的选择方案。这些控制器具有足够的带宽并集成有片上功率电子设备的外设以实现马达驱动的多种功能。集成的多功能减少了系统元件数并加快了产品上市。




上一页  [1] [2] 


本文关键字:控制器  马达  校正  DSP/FPGA技术单片机-工控设备 - DSP/FPGA技术