您当前的位置:五五电子网电子知识变频技术标准规程基于IGCT的高压三电平变频器若干关键技术 正文
基于IGCT的高压三电平变频器若干关键技术

基于IGCT的高压三电平变频器若干关键技术

点击数:7164 次   录入时间:03-04 11:56:25   整理:http://www.55dianzi.com   标准规程
 摘 要 :高压大容量变频调速系统是电力电子技术领域内的重要研究方向之一。本文针对作者所研发的基于IGCT的6kV/1250kW高压三电平中点箝位式变频器中的一些关键技术问题进行分析,并给出相关的仿真分析和试验研究结果。 

1  引言

    近年来,我国变频调速装置的研发和生产能力在不断的提高,应用水平也有长足的进步。目前正在向高性能和高压大容量方向发展。研制中高压变频器一直是热点之一,但由于其技术门坎高、资金投入大、研发周期长,也一直是该研究领域的难点之一。目前所采用的高压大容量变频器拓扑结构主要有:
    ● 电容飞跨式;
    ● 单元级联式,即所谓的Robicon结构;
    ● 二极管中点箝位(NPC)式,国际上以ABB和Siemens的产品为代表。
    相比之下,由于二极管箝位式结构需要器件比较少,结构紧凑,控制算法简洁、易于实现系统四象限运行而可以作为高端变频器使用等特点而被日益重视。但是由于该结构直接采用高压开关器件(如GTO、IGCT或高压IGBT等)作为开关工作单元,高压特征明显,器件承荷余量减小,对系统参数的配置要求提高,特别原来在中小容量和低压系统中不突出的能量瞬态过程和分布参数影响变得突出,致使研制难度增加,风险增大,进而成为高压大容量电力电子变换器的难点问题之一。
    我国对高压(3kV以上)大容量(1000kW以上)的三电平NPC变频调速系统的研制仍处于初步阶段。为加速我国自己的高端中高压变频调速装置的发展,2001年10月清华大学电机系与国电南京自动化股份有限公司联合成立了清华南自电力电子应用技术联合研究所,专门针对高压大容量三电平NPC变频调速系统进行了研制。2004年研制出基于IGCT的二极管箝位式6kV/550~1250kW三电平变频器样机,2005年实现了现场长期无故障满载运行,2006年通过了国家级技术检测部门的全部型式试验和部委级的技术和产品鉴定,目前已全面走向市场。
    回顾五年多的研发历程,走过了一条从理论到实践,再从实践到理论的探索过程。尤其是对高压大容量电力电子变换装置中的关键问题理解有了进一步认识,浅肤之识,与大家一起分享。

2  基于IGCT三电平NPC变频器主要结构特点

    由于高压大容量变频器的电压高、电流大,相应的电压电流变化率也大,回路分布参数影响大,使得该类变频器在开关器件的选择、器件之间的连线、吸收电路元件参数的匹配、波形调制以及滤波处理等方面与低压中小容量变频器有很大的区别。因此,结构上也有很大的不同。本文所研制的变频器结构原理图如图1所示。

图1 基于IGCT的二极管箝位式6kV/550~1250kW三电平变频调速系统www.55dianzi.com
    它在结构上有以下几个主要特点:
    (1)采用IGCT作为主开关器件,且采用压装结构
    采用IGCT作为主开关器件,且采用压装结构,如图2所示。其中,分立散热器一方面为IGCT散热和压装结构的支撑设备,另一方面也是连接两个IGCT的导体。


图2  基于IGCT的三电平NPC高压变频器结构实物图
    (2)三相桥臂共用两套di/dt吸收电路
    三相桥臂共用两套di/dt吸收电路(Ls、Rs和Cs),如图1所示。
    (3)直流母排与逆变回路通过层叠扁铜排相连
    直流母排与逆变回路通过层叠扁铜排相连,如图3所示。

图3  直流母排连线实物图
    (4)控制系统采用多CPU和光纤CAN总线通讯系统
    控制系统采用多CPU和光纤CAN总线通讯系统,如图4所示。

图4 多CPU主控制板(a)和CAN总线通讯板(b)www.55dianzi.com
    (5)输出采用滤波与升压一体化结构
    输出采用滤波与升压一体化结构,如图5所示。

图5  集成式的升压LC滤波系统
    正是由于这些结构上的特点,而凸现出一些必须解决的关键技术问题。

3  若干关键技术问题分析

    高压大容量变频器涉及的关键技术很多,本文就几个主要的关键问题进行叙述和分析。
3.1 IGCT安全工作区的有效设置
    要提高大容量电力电子装置可靠性,需要特别关注半导体开关器件的特性,同时研究器件的应用特性与电力电子装置中其它元素之间的关系,由此来设计和优化电力电子装置的拓扑、结构和控制策略等。通常器件应用手册中关于器件各类电特性的约束往往是基于特定的单管测试电路,其中某些关键参数(如杂散电感)在实际应用中由于结构设计的问题,很难保证与测试电路完全一致。而且,实际电路拓扑与半导体测试电路差异较大,往往涉及到多个开关管之间的相互作用和相互联系。同时,运行工况、负载特性以及器件参数的差异,使得性能优良的器件装备在特定装置、运行在特定装置中时并不一定会提升装置的可靠性,即通常意义下单个开关器件的安全工作区(以下简称SOA)并不总是适用于整个装置,甚至在实际应用中要作较大的修正。
    在基于IGCT的高压大容量变频调速研究中,围绕IGCT和二极管等开关器件进行设计和分析,提出了变换器全运行范围安全工作区定义,即以IGCT的安全工作区为基础,给出了IGCT安全运行与变换器安全运行的量化关系,并以此直接对变换器的额定工作点、控制方式、保护措施、结构杂散参数要求以及损耗和效率等进行优化,优化示意图如图6所示。在优化的过程中,综合使用了包括三电平变频器中点电压平衡与控制参数约束、开关器件损耗建模与变频器运行状况综合分析等多项具有自主知识产权的专利技术。实际应用中取得了良好的效果,大大减少了装置的故障率。

图6 全运行范围安全工作区在优化设计的应用
3.2 输出少谐波的混合调制
    高压变频器由于变换功率大,开关频率一般比较小,因而输出谐波比较大。采用常规的正弦PWM(SPWM)和空间矢量PWM(SVPWM)都难以解决输出谐波大的问题。特定消谐PWM(SHEPWM)属于优化PWM,通过优化开关时刻,可以用较少的开关次数得到较好的谐波特性。其主要优点是:在同样的开关次数下,输出波形质量高,转矩和电流脉动小;降低了对滤波器的要求,可以减小滤波器体积;在同样的波形质量下,开关次数低,损耗小,尤其适合采用GTO和IGCT等对开关频率有限制的高压大功率场合;直流母线电压利用率高。缺点是开关角度固定,需要离线计算,难以在线实现,控制不够灵活,尤其是低频时由于开关角度较多,对存储量要求较高。
本系统采用混合PWM方法,即低频时采用异步SVPWM,高频时采用SHEPWM,避免了高频时SVPWM谐波特性变差和SHEPWM在低频时存储量大的缺点,充分发挥了二者的优点,使变频器在整个工作范围内都可以有效抑制低次谐波,得到较好的输出波形。实现的难点在于衔接问题,需要确保二者间的平滑过渡以保证混合调制的适用性。为了解决这个问题,采用固定角度切换的方法。假定切换时刻的运行频率为45Hz,对于SVPWM,开关频率为600Hz,在参考矢量频率为45Hz时,在一个周期内参考矢量在360°空间内采样600/45=13.33次,其中必定有一次落入0~28°区间,仅当参考矢量落入这个区间内时才由SVPWM切换至SHEPWM。而从SHEPWM切换至SVPWM时,也仅当A相的相位落入某一固定角度区间时才切换至SVPWM。由于切换位置固定,其现象和行为是可重复的,在理论分析的基础上,通过实验对其进行微调,可以得到满意的结果。试验结果如图7所示,其中上面的为变频器输出线电压,下面的为变频器输出相电流。

[1] [2]  下一页


本文关键字:技术  变频器  标准规程变频技术 - 标准规程