1.“高低一高”变频调速系统
此种调速控制方案是将高压通过降压变压器,使变频器的输入电压降低,这样可以采用各大公司一般的交流变频器,然后将变频器的输出电压通过升压变压器提高到6 kV以满足交流电动机的电压要求,但此方案存在着以下问题:
(1)“高一低一高”变频系统需要用2个变压器,设备环节比较多,占地面积比较大,从而降低了效率,且降压、升压变压器不能互换,升压变压器需要特制,以减弱高次谐波的影响,成本会有所上升。
(2)该系统输出波形畸变较大,高次谐波含量较高,对电机的绝缘要求很高。
(3)该系统中的变频器整流部分普遍采用可控硅桥式整流电路,在电机低速运行时变频器的功率因数比较低,波形畸变很大,逆变部分大多采用6脉冲或12脉冲,输出波形失真较大,有大量高次谐波存在。
(4)该系统中的变频器工作在低电压状态,为满足功率输出的要求,工作电流会很大,往往要求变频器元件进行并联运行,为此必须进行元件配对,加均流措施,检修要求比较高。
[$page] 2.“高一高”变频调速系统
“高一高”变频调速系统(又称直接高压变频系统)是20世纪90年代针对“高一低一高”变频调速系统缺陷 所研制成功的新一代变频调速系统。该系统从根本上解决了“高一低一高”变频调速系统存在的问题,是一种性能优越的变频调速设备,它的优势在于:
(1)此系统一般使用l台变压器与电网隔离,变频器输出直接到电机。由于采用了桥式整流电路,在整个调速过程中功率因数很高,coS远远大于O.85,不需要装设无功 _self>补偿装置;又因为“高一高”变频调速系统采用多重化脉宽控制,通过模块输出串联迭加消除高次谐波的影响,不需要再装谐波滤波器。
(2)简化了主电路和控制电路的结构,变频器在中央处理器调节器控制下,调整整流及逆变部分的控制量,通过调节逆变器的脉冲宽度和输出电压频率,既实现调压,又实现调频,在处理器中集成了高精度的电机理论模型,高速采集变频器和电机的状态参数,进行优化处理,调节器进行无偏差的前馈控制,使控制误差降到了最小,从而使装置的体积小,重量轻,可靠性高,占地面积小。
(3)改善了系统的动态特性,变频器中逆变器的输出频率和电压,都在逆变器内控制和调节,因此,调节速度快,调节过程中频率和电压的配合较好,系统的动态性能好。
(4)该系统有很好的对负载供电的波形。变频器的逆变器输出电压和电流波形接近正弦波,从而解决了由于以矩形波供电引起的电机发热和转矩降低问题,改善了电动机的运行性能,“高一高”变频系统适用于常规电机和电缆的绝缘要求,现有的电机、电缆均可以继续使用。
(5)该系统变频器工作在高压状态,功率模块均封装在绝缘板箱内,拆装方便,用户可以安全方便地对每个单元进行诊断和查找故障,系统的检查和调正可以在变频器运行中进行,操作人员可以在线调整参数。
(6)采用高精度、高速度和光纤数字通讯控制技术,保证了低压控制部分和高压电机部分可靠电压隔离。
四、高压变频器的方案设计
由于在实际工程中存在种种不同的情况以及不同的要求,高压变频调速的应用方式也多种多样,由于“高一低一高”变频方式处于淘汰阶段,所以主要针对在“高一高”变频方式应用中需要重视的几个方面进行探讨。
1.整流方案选择
采用高压变频器的调速系统因其节能效果明显、调节方便、维护简单等优点,而被越来越多地应用。但它的非线性、脉冲性用电的工作方式,带来的干扰问题亦倍受关注。对于一台高压变频器来讲,它的输入端和输出端都会产生高次谐波,输入端的谐波会通过输入电源线对公用电网产生影响。一般来讲,变频器对容量大的电力系统影响不是十分明显,但是对于系统容量小的系统,谐波产生的干扰就不可忽视,它对公用电网是一种污染,客观的存在对公用电网和其它系统的危害大致有:
(1)谐波使公用电网的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的使用率,大量的三次谐波流过中线时会使线路过热甚至发生火灾。
(2)谐波影响各种电气元件的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪音和过电流,使电容器、电缆等设备过热,绝缘老化、寿命缩短以至损坏。
(3)谐波会引起公用电网局部的并联谐振和串联谐振,从而使谐波放大,这就使上述的危害大大地增加,甚至引起严重事故。
(4)谐波会对临近的通讯系统产生干扰,导致通讯质量降低,甚至信息的丢失,使通讯系统无法正常工作。
通常抑制谐波的方法基本思路有三,其一是装设谐波补偿装置来补偿谐波;其二是对电力电子装置本身进行改造,使其不产生谐波,且功率因数可控制为l;其三是在市电网络中采用适当的措施来抑制谐波。在高压变频器应用实例中主要采取以下几种措施来达到抑制谐波的效果,同时也产生了高压变频器在整流部分的几种应用方案:
(1)采用新型的整流器,取消隔离变
压器。大容量的变流器减少谐波的主要方法是采用多重化技术。高功率因数整流器主要采用PWM整流器,可构成四象限交流调速用变频器。这种变频器不但输出电压、电流为正弦波,输入电流也为正弦波,且功率因数为l,还可以实现能量的双向传递,代表了这一技术的发展方向。当电网电压与变频器和电机电压相同时,推荐采用电源侧串AC电抗器+PWM整流器的方案,由于PWM整流器在满足电网对谐波要求的同时还提供了近似于1的功率因数,并优化了变频的运行性能,采用此方案可获得高系统效率,小安装尺寸,低使用成本的变频最佳效果。(2)三相隔离变压器+谐波滤波器。在一些变频器容量占总负荷比例较小、谐波并非主要问题的项目中,采用三相隔离变压器+6脉冲整流器+谐波滤波器是消谐的最经济方案。此时隔离变压器应选用D一YNll接线组别的三相配电变压器,以保证相电动势接近于正弦形,从而避免相电动势波形畸变的影响。在此种项目中如对安装尺寸有特别限制,也可在电源侧串适当的AC电抗器取代隔离变压器,但对谐波抑制的效果较差,对电网的干扰较大,且仅适用于新电机。
(3)采用多相脉冲整流。当电网电压与变频器和电机电压不同、并且电机功率较大、对谐波干扰要求较高时,适合采用多相脉冲整流的方案。根据产品的不同(罗克韦尔、ABB、西门子、罗宾康等)有12脉冲整流、18脉冲整流、24脉冲整流、30脉冲整流的方案;配套的隔离变压器也有较大差别。从实用角度来看整流桥组成12相脉冲整流即可消除5、7次谐波,已基本满足电网谐波要求,因此900 kW以下采用12相脉冲整流即可,l 000.kW以上采用18脉冲整流、24脉冲整流、30脉冲整流均可达到要求的谐波标准。同时加大隔离变压器的容量对抑制谐波、减少对电源的干扰也具有一定效果,具体指标可咨询相关厂家的技术人员。
2. 其他注意事项
确定了电压等级及整流方案后,高压变频器的应用方案就已经基本确定了,接下来就是对各商家产品的了解与考察。目前在大中型水泥厂运用较多的还是国外的知名品牌,如罗克韦尔、ABB、西门子、罗宾康等,这几大公司的产品在工作原理上属于不同类别的变频器,不过总的来说都具有较高的平均无故障率,能稳定可靠的工作,在实际工程中都有成功的应用案例。他们在工作原理、功率元器件、控制方式、制造技术、降低故障率、维护性能、方案配置上各有特色,可以针对以上因素及各项电气指标进行综合比较,最终确定产品。
在进行施工图设计时需注意以下几个方面:在提出土建资料时,必须参考产品的详细资料,根据变频器(及隔离变压器)的安装尺寸、荷载、电缆路径等提出合适、合理的土建资料,如有隔离变压器,应尽量靠近变频器布置,同时在布置室内外电缆沟或桥架时,尽量让变频器的进出线电缆使用单独的路径,特别是要避开控制及信号电缆,这样可尽量减少变频器工作时产生的电磁干扰。在进行电气室布置时,必须考虑高压变频器的工作环境问题。由于变频器是电子装置,内含
上一篇:德力西系列变频器在污水处理厂应用