您当前的位置:五五电子网电子知识电工技术电工文摘电力变压器故障诊断使用模糊推理与覆盖集 正文
电力变压器故障诊断使用模糊推理与覆盖集

电力变压器故障诊断使用模糊推理与覆盖集

点击数:7754 次   录入时间:03-04 12:03:00   整理:http://www.55dianzi.com   电工文摘
1 引言

  现代电力系统日趋复杂,对电力设备运行可靠性的要求不断提高。如大型电力变压器作为电力系统中重要的变电设备,其运行状态将直接影响到电力系统的安全运行。所以,如能迅速而准确地对其进行故障诊断,防患于未然,将是保障供电可靠性的重要手段之一。
  但是,由于电力变压器的故障现象、故障原因及故障机理间存在着复杂性和模糊性,所以难以藉助确定性的数学模型来进行描述,也就难以藉助确定性的判据来进行诊断[1]。模糊数学能较好地处理事物的不完全性和不确定性,因此将其应用到故障诊断领域已成了近年来的研究热点之一[2,3];而覆盖集理论作为一种诊断推理策略[4],能够综合观测到的故障征兆来进行诊断推理,从而实现对故障的综合诊断。所以,将模糊数学和覆盖集理论相结合,既可以较好地解决故障诊断过程中遇到的模糊性问题,又利于有效地实现对故障的综合诊断,从而提高故障诊断的准确性和实用性。

2 模糊覆盖集理论[5]

  一个诊断问题P可以定义为一个四元式P={D,M,R,M+},其中:
  D={d1,d2,…,dn}、M={m1,m2,…,ml}分别是故障及征兆的有限非空集合;
  Ru-.gif (894 bytes)D×M,是定义在D×M上的模糊关系子集,其定义域为domain(R)=D,而值域为range(R)=M。对于R中的每一对(di,mj),R(di,mj)∈[0,1]是指di能够引起mj的一种可能性度量;
  M+={m1,m2,…,mk}是M的一个模糊子集,称为已知征兆集,对于每一个mj∈M+,M+(mj)∈[0,1]是mj在M+中的隶属度。
  为讨论问题的方便,宜进一步引入几个基本概念:
  DI={d1,d2,…,dm}是D的一个模糊子集,对于每一个d∈DI,DI(d)∈[0,1]是d在DI中的隶属度。
  mani(di)={mj|(di,mj)∈R,di∈D},是所有di可能引起的征兆集合。并称mani(DI)=mani(di)为DI可能引起的征兆集合;
  cause(mj)={di|(di,mj)∈R,mj∈M},是所有能引起mj的故障集合。并称cause(M+)=cause(mj)为可能引起M+的故障集合;
  explain(M+|DI)∈[0,1]是DI对M+的解释程度,即覆盖程度的度量。
  而在模糊覆盖集理论中,对于诊断问题的解有如下定义:
  定义1:对于任何诊断问题P,若一个模糊故障集合DID满足:(1)explain(M+|DI)≥A(0<A<1为覆盖程度),即DI以程度A覆盖M+;(2)对M+的任何覆盖集,有|DI|≤|DJ|,即DI是M的最小模覆盖集;则称DI是M+的一个可能解释。
  定义2:诊断问题P的解SOL(P)是所有可能解释M+的DI构成的集合。
  可见在该理论中,节约原则是求解问题的关键,本文采用的是最小模原则,其定义为:M+的一个覆盖集DI是一个解释,如果它在所有M+的覆盖集中模最小,即它包含覆盖M+所需的最少征兆个数。

3 模糊覆盖集诊断模型的求解算法

  在实际的故障诊断过程中,开始时可能只知道部分存在或部分不存在的征兆,而其它征兆存在与否则不清楚。因此可将所有征兆划分为三个部分:目前已知存在的征兆M+、已知不存在的征兆M-以及不知道存在与否的征兆M?。在诊断过程开始时,总会已知部分征兆M+存在,此时可采用并发性诊断问题的求解算法获取可解释M+的解。然后,随着对故障征兆了解程度的逐步加深,M+和M-在不断扩大,这时宜采取序贯诊断问题的求解策略来进一步获取诊断问题的解。
3.1 并发性诊断问题的求解过程  在并发性诊断问题的求解过程中,可能还要用到以下一些基本定义:
  定义3:一个结点ni是一个三元式(DI,M+1,M+2),其中:DID;M+1=M+∩mani(DI)是DI覆盖的已知征兆;M+2=M+-mani(DI)是DI未覆盖的已知征兆。结点ni代表诊断过程中的一个中间解,如果ni为一个终结点,即M+2=,则ni中所包含的DI就成为M+的一个可能解释。
  定义4:如果ni=(DI,M+1,M+2)是一个结点,那么对于任何dj∈cause(M+2),定义ni的后继结点为succ(ni,dj)=(DI∪dj,M+1∪some(M+2∩mani(dj)),M+2-some(M+2∩mani(dj))),可以看出ni的后继结点可能有多个。
  根据以上定义,诊断过程开始时,只有一个结点n0=(,,M+)(代表空集)存在,随着每一结点的不断扩展,最终可产生一系列不能再扩展的终结点。每一终结点中的DI均可覆盖已知征兆集合M+,因而可能成为M+的一个解释。在进行结点扩展时,只有当explain(M+1∪some(M+2∩mani(dk))|(DI∪dk))≥A(式中dk为待扩展的下一个故障形式)时,扩展过程才可以继续下去。3.2 序贯诊断问题的求解过程
  在应用并发性诊断问题的求解策略进行求解后,随着对故障征兆了解程度的逐步加深,可开始序贯诊断问题的求解过程,以便获取更加全面而准确的诊断结论。序贯诊断问题的求解过程为:
  1)如果通过一次测试发现一个新的征兆mj存在时,可将其从M?中取出,存入M+。
  2)对采用并发性诊断问题的求解算法所获取的每一个终点ni进行处理:如果ni对应的DI能够解释mj,则将mj加入M+1即可;如果ni对应的DI不能解释mj,将mj加入M+2,则ni成为非终结点,这时应继续采用并发性诊断问题的求解算法来获取新的诊断结论,从而将非终结点变为终结点。
  3)若通过测试发现仍有新的故障征兆存在,可重复上述2)的步骤。
  4)当所有可能出现的征兆均处理完毕,并且所有结点均为终结点后,序贯诊断问题的求解过程结束。3.3 最优诊断解的产生
  求解过程结束后,获取的可解释M+的DI往往不止一个,所以要对DI进行寻优。过程为:先依据最小模原则对DI进行筛选,对选出的DI依据其explain(M+|DI)值的大小进行排序,最大explain值所对应的DI即为最优诊断解。其中,explain(M+|DI)=∩DI(d)))]})(式中:n为DI中的故障个数;。

4 基于模糊覆盖集理论的变压器故障诊断模型

  通过对搜集到的故障变压器数据进行分析研究,并且在综合考虑了一些研究文章中提出的变压器诊断模型的优缺点后[6,7],建立了一个基于模糊覆盖集理论的变压器故障诊断模型,得到了征兆集合M、故障集合D以及故障与征兆间的连接关系集合R,分别如表1、表2和表3所示。

表1 征兆集合M列表

征兆编号征兆类型 m1三比值编码呈过热性故障特征 m2铁芯绝缘电阻及接地电流 m3绕组直流电阻三相不平衡系数 m4变压器本体油中含水量 m5三比值编码呈放电性故障特征 m6绕组变化 m7PD测量结果 m8绕组之间或绕组对地电容量 m9CO、CO2含量及CO/CO2 m10绕组的绝缘电阻

表2 故障集合D列表

故障编号故障类型 d1铁芯多点接地 d2铁芯局部短路或漏磁过热 d3分接开关故障或引线故障 d4围屏放电 d5匝绝缘损伤及匝间短路 d6悬浮放电 d7油中放电 d8绕组变形及匝间短路 d9绝缘老化 d10绝缘进水受潮

表3 连接关系集合R列表

故障集合征兆集合d1d2d3d4d5d6d7d8d9d10 m10.850.750.900.050.350.100.200.200.30  m20.90 0.80        m3   0.40  0.60 0.300.70 m4 0.150.050.900.600.850.700.75   m50.10   0.80  0.80   m6 0.300.300.800.700.900.900.80   m70.30      0.75   m8   0.700.65  0.650.80  m9         0.80 m10          

5 实例分析

  浙江某变电站7#主变,过去某次的色谱结果如下(×10-6):H2=70.4,CH4=69.5,C2H6=28.9,
C2H4=241.2,C2H2=10.4,CO=704,CO2=3350。其三比值编码为002,由于在三比值编码表中没有
该编码,所以很难判定故障类型;而CO/CO2=0.21,在0.09~0.33之间,应为正常;在进行的电气
试验项目中,绕组的三相不平衡系数小于2%,铁芯接地电流为0.1A。
  如采用本文提出的变压器故障诊断模型对其进行诊断,其诊断过程为:
  根据以上描述,由表1可知:M+={0.8/m1,0.3/m2,0.1/m3,0.2/m5}。同时定义A=0.7,即只有
当explain(M+|DI)≥0.7时,DI才可能成为M+的一个解释。
  首先扩展初始结点,从M+中取出m1,可知d1、d2和d3均满足explain(M+|DI)≥0.7的条件,所
以初始结点为:n1=({d1},{m1,m2,m5},{m3}),M+2={m3};n2=({d2},{m1,m5},{m2,m3}),M+2=
{m2,m3};n3=({d3},{m1,m3,m5},{m2}),M+2={m2}。接着分别扩展n1、n2和n3结点,以扩展n1结点为
例:先从M+2中取出征兆m3,可见只有d3能解释m3;并且explain({m1,m2,m3,m5}|{d1,d3})=0.746满
足大于0.7的条件,所以d3可构成n1的后继结点。同理可对n2和n3结点进行扩展,最终获取的三个
终结点分别为:n4=({d1,d3},M+,);n5=({d2,d1,d3},M+,);n6=({d3,d1},M+,)。
  所以,诊断问题的解为:SOL(P)={DI,DI,DI}={{0.8/d1,0.1/d3},{0.75/d2,0.3/d1,0.1
/d3},{0.8/d3,0.3/d1}},其中:DI(d1)等的值可通过下述模糊运算获得:DI(d)=M+(m)R(m→d),
式中:M+(m)是指每次取出的m在M+中的隶属度;d为待扩展的故障形式;R(m→d)是指m和d之间的
模糊关系矩阵;39-0.gif (60 bytes)是指极大-极小的模糊合成规则。
  接着在上述三个诊断解中选取最优诊断解:先利用最小模原则淘汰DI,然后分别计算出DI

[1] [2]  下一页


本文关键字:电力变压器  电工文摘电工技术 - 电工文摘