(2)在10 m的距离提供110 Mbit/s的传输速率,小于10 m的近距离时速度可达到500 Mbit/s,以替代当前广泛使用的IEEE1394a(400Mbit/s),USB2.0(480 Mbit/s)基于线缆的数据传输。
802.15.3网络拓扑结构为基于中央控制的面向连接的自组网(Ad Hoc)。网络初始化时,由任一个节点(DEV)来担任WPAN的协调器/调度器(PNC)。除了提供基本的网络同步之外,PNC还要根据预先定义的QoS策略以及当前剩余的信道时隙数量(CT,即Channel Time)完成接纳控制、分配网络资源、管理节能请求等功能。
802.15.3基于时隙的超帧结构由3部分组成:信标(Beacon)、信道竞争访问周期(CAP,即Contention Access Period)和信道无竞争周期(CFP,即Contention Free Period)组成,如图5所示。
信标在每一超帧的开始发送,载有网络的控制参数(网络同步、最大传输功率等)、信道时隙分配、超帧中传输的针对每一个业务流的指示信息等。CAP周期预留来传送无QoS的数据帧,如网内设备发出的认证、关联命令的请求和应答以及一些短的异步数据。
在CAP周期内,各设备采取载波侦听多路访问/冲突避免的访问控制机制来争用信道。超帧的其余时间(CFP周期)用来传输有特定QoS的数据,如高清晰度视频/音频流、大容量图像、音乐文档等,这些数据根据各自所需的带宽、时延要求被分别封装到不同的GTS中。各GTS的分配以及CAP和GTS之间的边界是动态可调的。
每个CFP周期分为管理时隙(STAS,即Management Time Slot)和确保服务的同步时隙(GTS,即Guaranteed Time Slot),GTS用于传输同步媒体业务流和异步数据,如图6所示。在CFP周期内所有的传输机会都开始于预先设定好的时隙,时隙的设定通过PNC与各DEV交互信标帧中流量映射信息单元(Traffic Mapping Information Element)来完成。在DEV分配到的GTS时隙中,DEV可以在满足传输时间不超过规定时长的条件下自行决定传输数据的长度。所有的GTS时隙的长度都是不固定的。有些GTS是动态改变的,即这些时隙在不同超帧中的位置是随时改变的。有些GTS的位置在一段时间内是基本固定的,即PNC虽然可以修正这些GTS时隙的位置,但是需要得到利用该时隙收发数据的DEV的同意方可,这样的时隙可以用来支持CBR业务。对于MTS时隙,可以用来在CAP周期中传输认证、关联命令等。
在802.15.3网络中,QoS可以通过对每一个业务流的预约来简单地实现。DEV先向PNC询问自己的QoS请求能否被信道时间管理器(CT Manager)满足,如果这些QoS请求得到PNC的许可,就会在链路层和IP层之间为此业务流建立专门的流标识。这种PNC与DEV之间相对独立的请求-应答机制很有效地降低了协议的复杂度,即在低层(链路层)并不需要实现太多复杂的功能。同时,由于在网络层的QoS研究已经建立起一套关于资源预约、分配调度的机制,从而可以使链路层与当前主流网络层协议密切配合。避免了网络分层结构带来的层与层之间的独立和冗余而导致的协议效率低下。资源预约的方式使得网络资源的达到最佳的利用,从而可以更好、更高效地规划网络的使用,提供可靠的QoS保障。但是,这种方式有时候也会带来过多的开销,如网络必须传输信令消息以提供资源预约,因此各种应用在数据收发之前会有一段延时。
802.15.3 MAC协议另外一个优点是其网络和应用的独立性。目前很多链路层以上的协议标准如IP、 USB、IEEE1394等正在制订服务汇聚子层( SSCS,即Service Specific Convergence Sub-layers)来支持与IEEE802.15.3链路层的平滑过渡和整合,图7给出了IEEE802网络、IEEE1394、USB2.0等上层应用基于802.15.3 MAC层的实现示意图。
四、IEEE802.11e与IEEE802.15.3的对比分析
上文讨论了IEEE802.11e与IEEE802.15.3两种MAC协议在提供QoS方面各自的特点。由于面向的对象和应用的不同,两种协议有着本质的区别。
1.媒体访问机制
媒体访问机制是IEEE802.11e与IEEE802.15.3最大的差别。802.11e采用随机争用和轮询相结合的访问控制,而802.15.3采用基于中心式的调度机制。两种方式都有各自的优点和缺点。当网络大部分带宽用来进行对等进程的通信(pere-to-pere)时适合于采用调度机制,例如多媒体家庭网络中常见的业务,各设备之间以对等进程的方式大量传送多媒体数据流,相比于轮询方式,调度机制可以有效地提高网络的效率。同时,IEEE802.l5.3基于时隙的超帧结构也降低了每个节点的实现复杂度,进而可以有效降低功耗,提高了电池寿命。进一步讲,由于每个DEV可以在预定的时间内完成数据的收发,DEV可以在不影响当前网络连接的情况下利用超帧中没有分配的时隙进行信道扫描,或者寻找信号强度更好、负载更小的其他微网。
IEEE802.11e HCF的轮询方式在WLAN的骨干网的工作方式(Infrastructure Network)时可以提供很高的效率,此时大部分的网络带宽用于AP与STA之间的数据收发。由于CF-Poll信息已经加载到数据帧中,TxOP的持续时间已经写入QoS控制域中,论询方式对于AP与STA之间的数据收发不会引入额外的开销。由于HC可以获知网络中所有的数据传输,并且HC可以根据QoS控制域中第8~15 bit的信息实时地了解每一个QSTA的业务队列,从而可以跟有效地对网络资源进行分配。通过调整TxOP,HC能够对于带宽预约、临时性网络拥塞作出迅速响应。这种迅速响应机制对于优化VBR业务中无线带宽的分配是非常有利的。
2.Ad Hoc工作模式下的QoS性能
802.11e在无QAP的情况下,只支持EDCF操作和基于优先级的QoS机制,不支持参数化的QoS,采用固定的信道访问参数,容易发生网络拥塞;有QAP时,可以支持基于优先级的QoS机制和参数化的QoS,但是AP切换时原有的安全和QoS无法保持。802.15.3则支持基于优先级的QoS机制和参数化的QoS,并且在PNC切换时原有的安全和QoS继续保持。
3.解决“隐藏节点”问题
802.11e采用NAV与CCA联合的载波侦听方式,通过RTS/CTS来设定各接收数据STA的NAV参数来避开数据冲突。802.15.3由于采用了中心控制的方式,每个DEV的收发时隙由PNC来分配,因此有效地解决了隐藏节点问题。
4.VBR业务支持
802.11e HC根据不同业务流的业务队列状况来动态分配TxOP,如果没有数据发送,QSTA会发送QoS-null帧来结束TxOP,对于VBR业务的响应迅速而有效。802.15.3通过DEV与PNC之间带宽请求-应答来完成对VBR业务的支持,但是响应时间相对802.11e较慢,但是802.15.3MAC协议对于低成本、低功耗的要求相比于响应时间是更重要的。
5.业务流优先级的支持
802.11e根据TC来提供8种业务流的优先级区分。802.15.3对于基于优先级的异步业务流,PNC可以向高等级的业务分配更多的GTS时隙;在CAP周期中同样可以实现类似EDCF方式的业务优先级区分。
6.参数化业务流的支持
802.11e具有业务流参数标识,HC通过调整TxOP来控制业务流参数。802.15.3也具有业务流参数标识,PNC通过CT和CTR_request/modify来动态调整业务流参数。
7.重负载下的稳定性
802.11e在EDCF访问机制下,HC无法控制QSTA的业务流发送,只能依靠调节CW和TxOP来限制业务流量;在轮询访问机制下属于中心控制的拓扑结构,HC完成接纳控制和业务调。802.15.3网络本质上属于中心控制的拓扑结构,PNC完成接纳控制和业务调度。
8.最大有效吞吐量
802.11e由于受CSMA/CA方式、固定长度SIFS/DIFS的限制,DCF的理论吞吐量上限是75 Mbps,HCF/PCF则可以提高信道带宽的利用率。802.15.3中心控制的调度方式可以提高吞吐量,对于802.15.3规定的2.4G物理层标准,其理论吞吐量上限可以达到325 Mbps,如果采用更高速的物理层技术如UWB等,吞吐量还可继续提高[7]。
9.实现复杂度
802.11e如果将EDCF、HCF全部实现,则复杂度很高。从当前的802.11a/b商用产品来看,802.11的实现都比较复杂,不适用于嵌入式应用,而且一部分802.11的协议功能需要依靠插卡的主机系统来完成。802.15.3复杂度则低很多,适合于了低功耗、低成本的便携设备。如果物理层结合新的UWB技术,则由于UWB基带不需要复杂的调制解调技术以及简单的射频前端设计,功耗和复杂度还可以进一步降低。
五、结论
IEEE802.11e和IEEE802.15.3两种MAC协议对于如何在无线网络MAC层提供QoS保障的问题做出了有益的尝试并推动了标准化工作和相关产业的迅速发展。由于面向的对象和应用的差别,两者在QoS性能上表现都还存在不足:802.11e如果能够吸收802.15.3基于中心控制的方式所带来的吞吐量、效率、实现复杂度等方面的优点,必将进一步促进无线局域网的发展,并为用户提供更好的服务质量。同样,802.15.3在处理VBR业务响应时间上的不足也可以参考802.11e根据每个QSTA的业务队列的信息来分配网络资源的做法,从而能够对带宽预约、临时性网络拥塞作出迅速响应。另外,802.15.3 MAC协议如果能采用UWB技术作为物理层实现,性能将会得到进一步提高,具有广阔的发展前景。
本文关键字:WLAN 电工文摘,电工技术 - 电工文摘