实际应用中,由于输入端是电压源供电,不能短路;感性负载时,输出端不能开路,即是在变换器工作过程中,同一输出线上的三个开关中,必须且只能有一个开关闭合,所以开关函数还必须满足式(3)
Sak+Sbk+Sck=1,(k∈P,N)(3)
根据图4,利用附加的中间量VP, VN(以O点为参考点),可将式(1)转化为如下方程:
=
(4)
=
(5)
式(4)和式(5)是进行双桥矩阵变换器拓扑改进的理论基础。因为,在稍后的应用研究中,将会发现传统拓扑存在下述缺陷:
1)最大电压增益为0.866,并且与控制算法无关;
2)主电路采用9个双向开关,在应用中存在着双向开关的控制和保护问题;要实现双向开关的控制和保护,要求两个开关换流时,既不能有死区又不能有交叠,任何一种情况都将导致开关管的损坏;目前,为了实现安全换流,BuranyN.提出了一种四步半软换流策略[3],台湾学者潘晴财教授提出了一种基于电流滞环调制的谐振式软开关换流策略;
3)必须采用复杂的PWM控制和保护策略,同时要求采用复杂的箝位保护电路。
为了克服上述问题,出现了一种新的双桥式矩阵变换器拓扑[4]。
2.2 双桥式矩阵变换器分析
双桥式矩阵变换器具有双桥结构。它克服了传统矩阵变换器的缺点,此外还具有以下的优点:
1)控制容易,电网侧的单桥可实现零电流开关,负载端开关控制类似于传统的DC/AC逆变器;
2)不同负载,开关数目可以减少;
3)箝位电路大大简化。
双桥矩阵变换器的基本原理是将交-交矩阵变换器等效为“整流器”和“逆变器”两部分,且工作过程是在同一级变换器上进行的。在风力发电系统中,通过对“整流器”理想开关函数的控制以获得最大的直流电压,而调节“逆变器”的理想开关函数可得到所需频率和幅值的输出电压。因此,可以方便地实现目前控制性能最好的矢量控制,简化了原有的传统矩阵变换器的控制方案。在采用矢量控制的电机调速应用场合,可将电机调速系统的矢量控制和变换器的矢量控制合为一体。目前已有专用的SVPWM集成芯片供选用,控制简单[2]。
2.2.1 18个开关的矩阵变换器
基于一定的假设,可实现图4所示的矩阵变换器。当VP恒大于VN时,在负载侧单桥可用单向开关代替双向开关,得到图5所示的18个开关的双桥矩阵变换器拓扑[4]。该拓扑适用于负载侧单桥的电压极性不可改变的场合,通过对电流流向的控制,同样可以实现功率的双向传输。那么,在风电系统中,既可以实现从电网供电,也可以实现从负载端(无刷双馈发电机)向电网反馈能量,获得风机的大范围变速恒频应用。
图 5 18个 单 向 开 关 的 矩 阵 变 换 器
Fig.5 Topology with 18 single directional switches
2.2.2 15个开关的矩阵变换器
通过对电网侧各输入相任意桥臂工作原理的分析可知,因为,图5中开关Sapp和Sanp可以采用同一个驱动信号,所以,可将上述两者用一个单向开关及两个箝位二极管代替。简化步骤如图6所示。
图 6 简 化 开 关 数 目 的 步 骤
Fig.6 Steps to reduce the switch number
这样,便可以得到简化的具有15个单向开关的矩阵变换器拓扑,如图7所示。该结构与图5所示的拓扑相比较,应用场合类似,也具有相同的功能。比如,可以进行四象限操作,实现双向流动,谐波容量低,功率因数接近1等等。其主要的区别在于,当中间直流环节的电流idc大于0时,对于图7所示的拓扑,其电网侧开关Sa,Sb,Sc的导通损耗会增加。
图 7 具 有 15个 开 关 的 矩 阵 变 换 器 拓 扑
Fig.7 Reduction of switch number from 18 to 15
在实际应用中,考虑到减少开关数目和简化控制的需要,推荐采用图7所示的具有15个开关的矩阵变换器,成本可以大大降低。
3 矩阵变换器中箝位电路的设计分析
在矩阵变换器的实际应用中,为了使矩阵变换器能够稳定安全工作,必须给开关外加过压保护装置。过压保护装置通常采用箝位电路,利用开关电容网络来吸收存储在L中的谐振能量,以实现箝位功能[5]。箝位保护电路是在变换器发生故障的时候工作的,是矩阵变换器的一个重要组成部分。
本文采用最基本的电容箝位网络,对于矩阵变换器的有源箝位技术将在另文中作进一步阐述。
3.1 矩阵变换器中箝位电路的工作原理
图2虚框部分所示的是传统三相矩阵变换器的箝位电路,是用12个快速恢复二极管组成的2个整流桥将输入/输出端连接在一起,还包括一个箝位电容Cc和一个泄放电阻R1构成[6]。箝位电容参与能量的转换,泄放电阻则给箝位电容提供一个放电通路。故障发生时,控制电路检测到故障信号,并通过关闭驱动信号使变换器的全部开关立刻关断,于是箝位电路开始工作,切断负载,并提供一个能量释放回路,使功率器件得到保护。另外,根据保护原理,充分利用主电路拓扑中的功率器件,可以大大减少箝位二极管的数目,使箝位电路的设计得到简化,降低成本[6]。
改进的双桥拓扑与传统拓扑比较而言,其箝位电路更为简单,只需一个二极管Dc和一个电容Cc[4]。下面对在风电系统中推荐使用的具有15个开关的矩阵变换器拓扑进行分析,其电路拓扑如图8所示。
图 8 15开 关 的 矩 阵 变 换 器 的 箝 位 电 路
Fig.8 15-switch topology with clamp circuit
当变换器启动后,电网侧开关导通,箝位电容Cc被充电,直至其两端的电压达到线电压峰值为止。在正常情况下,箝位电容电压比Vdc大,因此箝位二极管Dc反向截止,箝位电路不工作。当发生故障时,如前所述变换器的全部开关立刻断开,存储在负载电感中的能量转移到箝位电容。所以只要箝位电容值合适选取,装置的过压就可以避免。
3.2 矩阵变换器中箝位电路的参数选择
如果负载为双馈电机,发生故障时,箝位二极管导通,箝位电容和电机的输入端相连,但是电压极性相反,因此切断电机。箝位电容通过箝位二极管充电,此时它与负载连接的等效电路如图9(a)所示。图中的Lδs是定子漏感,Lδr是转子漏感,而Lm是电机的励磁电感;is,ir,im则分别是定子电流,转子电流和励磁电流;Cc即是箝位电容。
初始箝位电压Vc0等于输入网压的峰值。在电感放电过程中,假设励磁电流保持不变。转子电流从初始值ir减小到励磁电流im,箝位二极管则一直保持导通,直到定子电流is减小到0,也就是ir=im的时刻,如图9(b)所示。因此传输到箝位电路的总能量ΔQ
本文关键字:风力发电 电工文摘,电工技术 - 电工文摘
上一篇:交流异步电动机调速装置发展