电力电子学(或电力电子技术)的理论是建立在电子学、电力学和控制学三个学科基础之上的。起初它被认为是介于电子学、电力学与控制学之间的边缘学科,但是随着电力电子技术的不断发展,它已成为一个涉及领域广阔的学科,可以说凡是涉及到电能应用的场合,便有其用武之地。时值今日它不仅已发展成为高科技的一个分支,而且还是许多高科技的支撑。
电力电子技术之所以和“电力”二字相连则是因为最初它的应用范围主要是在电气工程中和电力系统中,对市电或强电进行控制与变换。其作用就是根据负荷和负载的特殊要求,对市电、强电进行各种形式的变换(主要是频率的变换),以使电气设备得到最佳的电能供给,使电力系统处于最佳的运行状态,从而使电气设备和电力系统实现高效、安全、经济的运行。电力电子技术发展到今天,它不仅仅只涉及到“电力”的变换与应用,而且也涉及到化学能电源(电池)、太阳能电池电能的变换与应用。虽然已突破了当初单纯“电力”的界限,但是仍然是在功率变换的范围。
仅就电力电子技术本身而言,它主要包括二个方面,即电力半导体器件制造技术和电力半导体变流技术。前者是电力电子技术的基础,后者是电力电子技术的核心。二者相辅相成,相互依存,相互促进的关系,使得电力电子技术发展的势头一浪高过一浪,使其在科技进步和经济建设中发挥着越来越重要的作用。
1电力半导体器件
半导体变流技术的发展,立足于电力半导体器件的发展。而电力半导体器件是以美国1956年生产硅整流管(SR)、1958年生产晶闸管(SCR)为起始点逐渐发展起来的。
经过了40多年的发展,在器件制造技术上不断提高,已经历了以晶闸管为代表的分立器件,以可关断晶闸管(GTO)、巨型晶体管(GTR)、功率MOSFET、绝缘栅双极晶体管(IGBT)为代表的功率集成器件(PID),以智能化功率集成电路(SPIC)、高压功率集成电路(HVIC)为代表的功率集成电路(PIC)等三个发展时期。从晶闸管靠换相电流过零关断的半控器件发展到PID、PIC通过门极或栅极控制脉冲可实现器件导通与关断的全控器件,从而实现了真正意义上的可控硅。在器件的控制模式上,从电流型控制模式发展到电压型控制模式,不仅大大降低了门极(栅极)的控制功率,而且大大提高了器件导通与关断的转换速度,从而使器件的工作频率由工频→中频→高频不断提高。
在器件结构上,从分立器件,发展到由分立器件组合成功率变换电路的初级模块,继而将功率变换电路与触发控制电路、缓冲电路、检测电路等组合在一起的复杂模块。功率集成器件从单一器件发展到模块的速度更为迅速,今天已经开发出具有智能化功能的模块(IPM)。 发展历程 器件类型 控制模式 结构特点 第一代分立器件(DD) 整流管(Diodes) 普通型快速恢复型肖特基型其它 不控换相关断 分立器件,或几个分立器件芯片组成的模块。 晶闸管(Thyristors) 普通型双向型逆导型快速型光控型其它 半控换相关断电流型控制 分立器件,或几个分立器件芯片组成的简单模块;或几个分立器件芯片与辅助电路组成的模块。 第二代功率集成器件(PID) 门极可关断型(GTO)其它 全控、电流型控制 集成器件,或几个集成器件芯片与辅助电路组成的模块。 巨型晶体管(GTR) 功率MOSFET绝缘栅双极晶体管(IGBT)静电感应晶体管(SIT)其它 全控、电压型控制 集成器件,或几个集成器件芯片与辅助电路、智能化电路组成的智能化模块。 第三代功率集成电路(PIC) 智能功率集成电路(SPIC)高压功率集成电路(HVIC) 含有功率器件在内的多功能单元集成的、智能化的超大面积集成电路。
表1具有代表性的电力半导体器件发展概况
所有这一切为高频变换技术的开发,为变流器实现高频化、小型化、轻量化,为节能、节材、提高效率与可靠性奠定了基础。
关于具有代表性的电力半导体器件与模块的发展概况可参见表1。
概括电力电子器件40多年来的发展,经历了三个时期,具体可分为四个阶段。
(1)第一阶段
以整流管、晶闸管为代表的发展阶段,其在低频、大功率变流领域中的应用占有优势,很快便完全取代了汞弧整流器。
(2)第二阶段
以GTO、GTR等全控器件为代表的发展阶段,虽仍属电流型控制模式,但其应用使得变流器的准高频化得以实现。
(3)第三阶段
以功率MOSFET、IGBT等电压型全控器件为代表的发展阶段,可直接用IC进行驱动,高频特性更好,可以说器件制造技术已进入了和微电子技术相结合的初级阶段。即电力电子器件与电子器件在发展的道路上,经历了一段时间的分道扬镳、各走各的路的状况之后,又走到一起了。
(4)第四阶段
以SPIC、HVIC等功率集成电路为代表的发展阶段,使电力电子技术与微电子技术更紧密地结合在了一起,是将全控型电力电子器件与驱动电路、控制电路、传感电路、保护电路、逻辑电路等集成在一起的高度智能化的功率集成电路。它实现了器件与电路的集成,强电与弱电、功率流与信息流的集成,成为机和电之间的智能化接口,机电一体化的基础单元,预计PIC的发展将会使电力电子技术实现第二次革命,进入全新的智能化时代。这一阶段还处在初期发展中。
2半导体电力变流器
21变流技术的应用范围
变流技术发展到今天,其应用范围大致分为5个方面。
(1)整流:实现AC/DC变换;
(2)逆变:实现DC/AC变换;
(3)变频:实现AC/AC(AC/DC/AC)变换;
(4)斩波:实现DC/DC(AC/DC/DC)变换;
(5)静止式固态断路器:实现无触点的开关、断路器的功能,控制电能的通断。
22变流技术的发展
变流技术的发展,已经历了三个阶段。
(1)第一阶段
第一阶段是基于电子管、离子管(闸流管、汞弧整流器、高压汞弧阀)的发展与应用,当时把这一学科称作工业电子学(IndustrialElectronics)。这一阶段的研究工作,主要是集中在整流、逆变和变频技术的开发上。变流技术的应用领域主要是直流传动,直流牵引,电化、电冶、中频、高频淬火、加热,高压直流输电等。由于直流传动,直流牵引,电化电冶在变流技术应用中占有压倒的优势,因此,那时将直流传动、牵引、电化称作变流行业的三大支柱。其实从变流技术的分类来看,它属于整流变换,是变流技术的一小部分。
(2)第二阶段
第二阶段是基于硅整流管、晶闸管的发展与应用,主要是晶闸管。在我国始于20世纪60年代初,电力电子学(PowerElectronics)问世,并取代了工业电子学。由于变流技术的基本理论——整流、逆变、变频技术的研究,可以说在第一阶段已经完成,这已不是第二阶段的研究主题。这一阶段主要是针对硅整流管、晶闸管取代电子管、离子管以后出现的新问题,(如硅整流管、晶闸管的阻断电压不高,通态电流不大,耐受过电压、过电流冲击能力不强,应用中稍有异常状况出现,便会造成器件永久性损坏)开展的应用研究,诸如:触发电路的研究、器件并联均流措施的研究、器件串联均压措施的研究、器件换相过程中防止开通过电流、关断过电压的缓冲(阻尼)电路的研究、变流装置过电压保护、过电流保护、过热保护的研究,以及器件的热容量与变流系统故障时系统短路电流及快速熔断器短路容量的保护配合研究等。随着器件制造水平的不断提高,变流装置保护措施的不断完善,使得硅整流管、晶闸管在变流装置中的应用技术日趋成熟。
如同任何新生事务的发展都是势不可挡一样,硅整流管、晶闸管在变流技术中的应用与发展,亦是势不可挡。它很快便取代了汞弧整流器在变流技术中的地位,使我国进入了电力电子技术的开发与应用阶段,而我国的汞弧整流器制造业在完成自己的历史使命后于1972年正式停产。它不仅在所谓变流技术三大支柱产业中完全取代了汞弧整流器,并且功率更大,即使在高压直流输电领域,世界上第一个高压晶闸管换流阀于1970年在瑞典哥特兰岛直流输电工程中投运,宣告了高压汞弧阀在高压直流输电领域中历史使命的终结。除此而外,它还取代了用于电镀、蓄电池充电、发电厂(站)与变电站直流系统的电动机—发电机组;取代了发电机的直流励磁机组。
这一时期,随着整流管特别是晶闸管制造技术水平的不断提高,半导体变流技术所涉及的应用领域不断得到扩展。例如,快速晶闸管的开发大大促进了中频感应加热、熔炼、淬火电源(1kHz~8kHz)的发展;为国防建设和高科技研究服务的晶闸管低频电源、400Hz中频电源、高精度稳压电源与稳流电源相继开发出来;还有许多应用领域,不再赘述。
以晶闸管应用为核心的这一发展阶段,无论是整流、逆变、变频,其变换都是通过对晶闸管的门极进行移相控制(α、β)而实现的,即相控型的变换技术。由于晶闸管属于非自关断(全控)器件,它又是电流型控制器件,所以在高频应用领域,它还无法取代闸流管和电子管,只在低频大功率领域占优势。
在这一阶段,关于实现DC/DC变换的斩波技术的研究已经开展,并且率先应用在直流牵引调速中。公交无轨电车上所用的晶闸管调速,即是DC/DC变换应用的实例。只不过由于晶闸管是半控器件,将其用在DC/DC变换中,为了强迫其关断,主电路、控制电路较为复杂,但是其节能效果是显著的。
(3)第三阶段
第三阶段是基于全控型电力半导体器件的发展与应用,是半导体电力变流器向高频化发展的阶段,也是变流装置的控制方式由移相控制(PhaseshiftControl)向时间比率控制(TimeRatioControl—TRC)发展的阶段。时下将采用上述二种控制方式的变流装置(电源)简单地称作相控电源和开关电源的说法是不确切的,这是因为在半导体电力变流器中,承担功率变换的电力电子器件就是作为无触点开关来应用的,无论是相控电源还是时间比率控制电源都是工作在开关状态,因此,称为移相控制电源和时间比率控制电源的比较确切。
TRC一般有三种,即脉冲宽度调制(PulseWidthModuration-PWM),脉冲频率调制(PulseFrequencyModulation-PFM),混合调制(PWM+PFM)。PWM方式因为调制频率固定,即调制周期T恒定(或基本不变),通过改变控制脉冲的占空比D进行变换电路的调节,从而使滤波电路的设计比较简单,所以常用的TRC是PWM方式。
上一篇:大功率光伏逆变系统的研究