您当前的位置:五五电子网电子知识电工技术电工文摘通信系统过电压产生的原因与防护 正文
通信系统过电压产生的原因与防护

通信系统过电压产生的原因与防护

点击数:7340 次   录入时间:03-04 11:39:06   整理:http://www.55dianzi.com   电工文摘

防雷设施用的接地体,其效果和作用的大小可用冲击接地电阻Rsh来表达,Rsh愈小则说明该接地体的效果和作用愈好。所谓冲击接地电阻,就是通过接地体引泄雷电流时的电阻。由于接地体引泄雷电流时电流密度很大,使接地体周围土壤的电场强度增大,所以接地体周围将产生局部火花放电。在火花放电范围内,土壤中的电压降有所减小,相当于增大了接地体的尺寸,因此冲击接地电阻比工频接地电阻要小些。即

Lxy5.gif (4024 字节)

图5避雷针与被保护物间的距离

Rsh=ashRE

式中RE——工频接地电阻(可测得);

ash——冲击系数,一般小于1。

独立避雷针均应有独立的接地体,按规定冲击接地电阻宜小于10Ω。放雷设施在雷雨季节必须处于良好的运行状况,接闪器与引下线之间,引下线与接地体之间应可靠连接;还应特别注意避雷针(线)与被保护物之间的距离,防止雷电流产生的高电位对被保护物发生反击现象。例如,在图5中避雷针距被保护物的最近点A之电位为

uA=uR+uL=iRsh+Ldi/dt

式中uR——雷电流在接地体上产生电位的电阻分量;

uL——雷电流在h段引下线上产生的电感压降(即电位的电感分量,忽略引下线电阻);

Lxy6.gif (4030 字节)

图6雷电冲击波

Rsh——接地体电阻;

L——h段引下线的电感;

i——雷电流,设计时可取150kA。

根据实验数据,工程上可按下式确定安全空气距离Ssaf

Ssaf≥0.3Rsh+0.12h

式中Ssaf——安全空气距离,m。

为保证安全可靠,避雷针(线)的安全空气距离Ssaf不得小于5m。

为了防止避雷针(线)接地体在土壤中对被保护物接地体发生闪络,两接地体之间必须保持足够的地中距离SE,通常可按下式确定

SE≥0.3Rsh

要求SE不小于3m。

3.2感应过电压的防护

(1)雷电冲击波的特性

当传输线路遭受雷击后,在导线上产生雷电冲击波并以电磁波速度向导线两侧流动,这种流动的冲击波又叫行波。如果忽略导线的分布电阻和导线对地电导,仅考虑导线的分布电感L0和分布电容C0,当行波经过导线时,在L0中形成磁场,能量为L0i2/2;在C0中形成电场,能量为C0u2/2。随着电流和电压冲击波对L0和C0的充放电变化,相当于行波沿无损导线向前传播。

设行波在某一瞬间的电位分布如图6所示,若A、B两点之间距离x=vt,B点对地电位为零,则A、B两点间的电感为L0x=L0vt,于是A点电位为

uA=L0vtdi/dt=L0vta

式中v—行波速度;

a=di/dt—电流冲击波的陡度。

同时,A点电位还与A点在dx段的对地电容C0dx充电电荷量有关。设单位长度导线上的电荷量为q,则导线在dx段上的电荷量为qdx。因此

uA=qdx/C0dx=q/C0

电流i可用电荷量的变化率来表示,即

i=qdx/dt=qd(vt)/dt=qv=at

故uA=at/vC0

又因uA=L0vta

由此可得

在架空传输线路中若假定为无损导线,则可认为,雷电冲击波(行波)在无损导线中的行进速度与电磁波的传播速度相同(即光速)。如果导线与地之间充填其它介质,例如用绝缘纸、塑料或其它介质充填的电缆等,则雷电冲击波在导线上的传播速度将降低。另外,实际的导线总有分布电阻和对地电容,当发生过电压时还会产生电晕而造成能量损耗,所以行波在传播过程中必然会逐渐衰减和变形,波幅值和波陡度会逐渐减小。

由此,在架空线路的终端串接大电感或并联电容器,可以拉平冲击波的波头,对防雷是有利的,但不解决根本问题。关键是降低冲击波的幅值,把它抑制到规定的数值以下。

(2)感应过电压的防护

过电压产生的同时往往伴随着过电流的产生,因此在实施保护时要从限制过电压和限制过电流两方面考虑:即电压限制和电流限制。

①电压限制:从原理上讲是应用“非线性效应”,使得在正常工作时在带电导体和一个补偿导体(通常是地)之间有一条开路的电路。保护元件起作用后,电荷散逸使得电压衰减。在这个过程中可能短暂地产生强电流,电压限制元件的放电能力必须调整到要释放电流的值。

常见的几种电压限制元件及其工作特性如下:

过电压放电器/气体放电管:过电压放电器/气体放电管是具有一定气密的玻璃或陶瓷外壳,中间充满稳定的气体,如氖或氩,并保持一定压力。电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可保持在一个确定的误差范围内。

当电压升高至放电电压Ua之前,GDT(气体放电管)是一个绝缘体(电阻Riso>100MΩ)。当电压升高到大于放电电压后,过电流大部分泄入大地,产生电弧放电,电压会降低到几乎与电流大小无关的电弧电压(10V~25V)。当电流下降到低于低限值时,放电器会熄灭电弧并恢复其原来的高电阻状态。GDT通常是安装在承受运行电压的线路支线上,因此就有放电器不能熄弧的风险。所以对熄弧性能有一定的要求。GDT的能量吸收能力与其它电压限制装置相比是非常高的。放电特性也受电压上升速度的影响。

这种装置的两电极和三电极型应用于电讯工业中。三电极型专门为成对线路设计,可以理解为带一个公共电弧室的两个组合电极的放电器。这种设计可确保在两个室中同时产生电弧,因而当两条线中同时发生干扰时,可以获得最优的共模干扰抑制。

变阻器/VDR:变阻器是陶瓷元件,其应用越来越广。例如,将氧化锌(与其它添加剂一起)在一定条件下烧结,电阻就会受电压的强烈影响。这个特性也是其名字(电压变阻器)的由来。电压变阻器(VDR)也叫变阻器。电流(I)随着电压(U)的上升而急剧上升。正式的关系由公式I=aKU表达,其中K是与几何形状有关的元件常数,a是一个非线性指数。

变阻器的典型特性是当处于工作电压时,压敏电阻值极大;在雷电波侵入作用下,它的电阻值甚小,向大地泄放电流。由于电流过大,因此变阻器内部发热量很大。变阻器在远高于其额定电压的情形下运行一般只可能保持很短的一段时间。

齐纳二极管:双向齐纳二极管具有与变阻器类似的导电特性,对正向和反向电流在电流/电压特性上有一个拐点。非线性指数比变阻器要高,使二极管的“开通”更为急剧,因而可以有效地规定限制电压。

其结构是两个二极管反向串联,可获得对称性。运作于“反向”方式下的二极管PN结阻挡层一般可阻止电流经过。当电场强度超过一定水平时,电子就会脱离其晶格束缚(即齐纳效应),而已经大大加速的带电粒子会从晶格中推出更多的粒子(即雪崩效应)。结果就是阻挡层的“突破”并产生电流。这个“突破”电压称为齐纳电压Uz,电压稳定效应则是由于当电压大于Uz时,很大的电流变化只产生很小的电压变化。齐纳二极管的稳压效应比变阻器要好。

齐纳二极管的能量吸收比变阻器小,因为其阻挡层比变阻器层要薄得多。因此齐纳二极管的负荷承受能力要低得多,由此所出现的过热情况可以部分地用压制成形的金属电极补偿,电极可以散掉热量,但也增加了体积。抑制二极管是一种特别的保护二极管,具有很短的反应时间及很高的尖峰电流负荷承受能力。

闸流二极管:由于放电电流中伴有很大的电压降,变阻器和二极管必须吸收大量的能量。在保护设备起作用之后,容许把故障电压降低到远低于保护电平的值,甚至低于运行电压,以便减少能量的转换。这种特性类似于放电器的“火花放电”。

在半导体元件中,上述特性可以在闸流二极管中观察到。闸流二极管开始会阻塞,直到达到放电电压时,电压下降至几伏并产生放电电流。当电流下降到最小值时,闸流二极管会重新阻塞,并恢复其原来的断路状态。与GDT一样,在这种情况下,必须满足干扰清除后会安全停止放电的要求。闸流二极管有单向和双向元件。其特点是高尖峰电流和短反应时间,因而特别适用于较高的保护电平(几十伏到几百伏)。

设计相同的齐纳和闸流二极管其限制电压与容许放电电流的关系取决于半导体。这些二极管的结构和尺寸决定了能吸收的功率大小。随着限制电压的提高,齐纳二极管的容许电流呈双曲线下降,然而闸流二极管的容许电流几乎是恒定的。其原因是,在闸流二极管放电以后,电压降几乎与电流大小无关。由此可见,在结构体积相同的情况下,齐纳二极管较适用于低的限制电压,而闸流二极管则适用于高的限制电压,其分界点是50V左右。

热敏电阻:以上所讨论的元件其功能都是基于纯电压效应。热敏电阻在温度升高时电阻会减少。与任何电阻一样,电流所产生的电能损耗会使热敏电阻升温。升温使电阻下降,电流升高。结果就形成了与稳压元件相似的电流/电压关系。但是只有在反应时间之后,这种效应才会发生。所以保护作用受到元件热惯性的影响。

②限流元件的电流限制特性有两个功能:第一、当超过电流限值时,无条件地切断电路或者加以限制;第二、去耦与/或抑制短暂电压/电流尖峰(大部分情况下与电压限制元件一起使用)。

电阻:电阻是去耦的最简单方式,一般没有断路的功能。电压尖峰所产生的短暂电流尖峰会在电阻上产生相应的压降,因而减少了干扰的影响。去耦元件常常与电压限制元件一起用于电路中而作为串联的电阻器。

上一页  [1] [2] [3]  下一页


本文关键字:通信  电工文摘电工技术 - 电工文摘