2 计算合理的保护时间
在实际应用中,不同设计的控制器,其回路电感和电阻存在一定的差别以及短路时的电源电压不同,导致控制器三相输出线短路时的短路电流各不相同,所以设计者应跟据自己的实际电路和使用条件设计合理的保护时间。
短路保护时间计算步骤:
2.1 计算MOSFET短路时允许的瞬态温升
因为控制器有可能是在正常工作时突然短路,所以我们的设计应是基于正常工作时的温度来计算允许的瞬态温升。MOSFET的结点温度可由下式计算: Tj = Tc + P × Rth(jc)其中: Tc:MOSFET表面温度
Tj:MOSFET结点温度Rth(jc):结点至表面的热阻,可从元器件Date sheet中查得。
一般来说,一只控制器输出功率为350W时,并且采用同步整流技术,续流侧MOSFET的耗散功率为20W左右,即P=20W。同时我们假设MOSFET工作时的表面温度Tc为100℃(炎热的夏季MOSFET的表面温度一般都会达到此值),则:Tj = Tc+P× Rth(jc) = 100+20×0.45 = 109℃。
理论上MOSFET的结点温度不能超过175℃,所以电机相线短路时MOSFET允许的温升为:Trising = Tjmax - Tj = 175-109 = 66℃。
2.2 根据瞬态温升和单脉冲功率计算允许的单脉冲时的热阻
由图2可知,短路时MOSFET耗散的功率约为: P = Vds × I = 25 × 400 = 10000W脉冲的功率也可以通过将图二测得波形存为EXCEL格式的数据,然后通过EXCEL进行积分,从而得到比较精确的脉冲功率数据。
对于MOSFET温升计算有如下公式: Trising = P × Zθjc × Rθjc其中: Rθjc------结点至表面的热阻,可从元器件Date sheet中查得。
Zθjc------热阻系数由上式变形可得,Zθjc = Trising ÷( P × Rθjc)代入数据得:Zθjc = 66 ÷ (10000 × 0.45)= 0.015
2.3 根据单脉冲的热阻系数确定允许的短路时间
由图3最下面一条曲线(单脉冲)可知,对于单脉冲来说,要想获得0.015的热阻系数,其脉冲宽度不能大于20us。

3 设计短路保护应注意的几个问题
由于不同控制器的PCB布线参数不一样,导致相线短路时回路阻抗不等,短路电流也因此不同。所以,不同设计的控制器应根据实际情况设计确当的短路保护时间。
由于应用中使用的电源电压有可能不同,也会导致短路电流的不同,同样也会影响到保护时间。
注意控制器实际工作时的可能最高温度,工作温度越高,短路保护时间就应该越短。
本文讨论的短路保护时间是指MOSFET能承受的最长短路时间。在设计短路保护电路时,应考虑硬件及软件的响应时间,以及电流保护的峰值,这些参数都会影响到最终的保护时间。因此,硬件电路设计和软件的编写致关重要。
本文讨论的短路保护时间是单次短路保护时间,短路后短时间内不能再次短路。如果设计成周期性短路保护,则短路保护时间应更短。
4 结论
短路保护在瞬间大电流时能对MOSFET提供可靠的快速保护,大大增加了控制的可靠性,减少了控制器的损坏率。
本文关键字:如何 控制器 电动车 电子技术,电工技术 - 电子技术