测长度还是测角度;测长度如何通过机械方式转换;测量范围是360°以内(单圈),还是超过360°(多圈);转动方向是一个方向旋转循环工作,还是正反向方向循环工作;测量速度还是测量角位置,这都是在选择光电编码器时需要事先确定的。
角度测速常采用增量式编码器,其具有体积小、价格低等优点,且可以无限累加测量,因此目前增量式编码器在测速应用方面仍处于无可取代的主流位置。增量式编码器在转动时输出脉冲,通过计数装置来计算速度和位置。当编码器断电时,依靠计数装置的内部记忆来保存位置,因此断电后,编码器不能有任何转动。当再次通电工作时,编码器输出脉冲过程中,也不能有脉冲干扰,否则,计数装置记忆的零点就会偏移,而且这种偏移量是不确定的,只有错误的生产结果出现后才能发现。解决这个问题的方法是增加参考点,编码器每经过参考点,用参考标记修正计数装置的计数值。在经过参考点以前,是不能保证位置的准确性的。因此,在工业控制中有每次操作先找参考点的操作步骤。这样的操作对有些工控项目比较麻烦,甚至有些项目不允许开机寻找参考点,并且对位置、零位有严格要求,则这样的项目就应该选用绝对式编码器。
绝对式编码器输出代码具有位置唯一性(单圈或多圈),经过后续控制系统进行运算后不仅可以测位置也可以测速。绝对式编码器光栅码盘上有许多条刻线,每条刻线依次以2线、4线、8线、16线……排列,这样,在编码器的每一个位置,通过读取每条刻线的亮、暗,获得一组从20~2n-1的唯一的二进制编码(格雷码),这就称为n位绝对式编码器。绝对式编码器输出角度信息由光栅码盘机械位置决定,因此每个位置具有唯一性,它无需记忆,无需找参考点,不受断电、干扰的影响。所以,光电编码器的抗干扰性、数据的可靠性大大提高。由于绝对式编码器在位置定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。
绝对式编码器又分为单圈绝对式编码器和多圈绝对式编码器。
当编码器主轴转动超过360°时,角度编码又回到原点,这样就不符合绝对编码的唯一原则,这样的编码器只能用于旋转范围在360°以内的测量,称为单圈绝对式编码器。
如果要测量旋转超过360°角度范围,就要用到多圈绝对式编码器。运用钟表齿轮的传动原理,当主光栅码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮、多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对式编码器就称为多圈绝对式编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,且无需记忆。多圈绝对式编码器在长度定位方面的优势明显,已经越来越多地应用于工控定位中。
光电编码器机械外形选择
光电编码器机械外形选择主要包括以下几方面:
轴的连接形式:空心轴(轴套型连接)、实心轴(通过软性联轴器连接);
轴径;