您当前的位置:五五电子网电子知识单元电路变换电路如何准确地估算采样时钟抖动介绍 正文
如何准确地估算采样时钟抖动介绍

如何准确地估算采样时钟抖动介绍

点击数:7413 次   录入时间:03-04 11:47:04   整理:http://www.55dianzi.com   变换电路

    模数转换设计的最新进展极大地扩展了可用输入范围,这样系统设计人员便可以去掉至少一个中间频率级,从而降低成本和功耗。在欠采样接收机设计中必须要特别注意采样时钟,因为在一些高输入频率下时钟抖动会成为限制信噪比 (SNR) 的主要原因。本文章重点介绍如何准确地估算某个时钟源的抖动,以及如何将其与ADC 的孔径抖动组合。

    采样过程回顾

    根据 Nyquist-Shannon 采样定理,如果以至少两倍于其最大频率的速率来对原始输入信号采样,则其可以得到完全重建。假设以 100 MSPS 的速率对高达 10MHz 的输入信号采样,则不管该信号是位于 1 到 10MHz 的基带(首个Nyquist 区域),还是在 100 到 110MHz 的更高 Nyquist 区域内欠采样,都没关系(请参见图 1)。

    1.jpg

    图 1 100MSPS 采样的两个输入信号显示了混叠带来的相同采样点

    在更高(第二个、第三个等)Nyquist 区域中采样,一般被称作欠采样或次采样。然而,在 ADC 前面要求使用抗混叠过滤,以对理想 Nyquist 区域采样,同时避免重建原始信号过程中产生干扰。

    时域抖动

    仔细观察某个采样点,可以看到计时不准(时钟抖动或时钟相位噪声)是如何形成振幅变化的。由于高 Nyquist 区域(例如,f1 = 10 MHz 到 f2 = 110 MHz)欠采样带来输入频率的增加,固定数量的时钟抖动自理想采样点产生更大数量的振幅偏差(噪声)。另外,图 2 表明时钟信号自身转换速率对采样时间的变化产生了影响。转换速率决定了时钟信号通过零交叉点的快慢。换句话说,转换速率直接影响 ADC 中时钟电路的触发阈值。

    2.jpg

    图 2 时钟抖动形成更多快速输入信号振幅误差

    如果 ADC 的内部时钟缓冲器上存在固定数量的热噪声,则转换速率也转换为计时不准,从而降低了 ADC 的固有窗口抖动。如图 3 所示,窗口抖动与时钟抖动(相位噪声)没有一点关系,但是这两种抖动分量在采样时间组合在一起。

    3.jpg

    图3 ADC的窗口抖动

    图3还表明窗口抖动随转换速率降低而增加。转换速率一般直接取决于时钟振幅。
 

    时钟抖动导致的 SNR 减弱

    有几个因素会限制 ADC 的 SNR,例如:量化噪声(管线式转换器中一般不明显)、热噪声(其在低输入频率下限制 SNR),以及时钟抖动(SNRJitter)(请参见下面方程式 1)。SNRJitter 部分受到输入频率 fIN(取决于 Nyquist 区域)的限制,同时受总时钟抖动量 tJitter 的限制,其计算方法如下:

    1.jpg

    SNRJitter[dBc]=-20×log(2π×fIN×tJitter)??(2)

    正如我们预计的那样,利用固定数量的时钟抖动,SNR 随输入频率上升而下降。图 4 描述了这种现象,其显示了 400 fs 固定时钟抖动时一个 14 位管线式转换器的 SNR。如果输入频率增加十倍,例如:从 10MHz 增加到 100MHz,则时钟抖动带来的最大实际 SNR 降低 20dB。

    2.jpg

    图4 SNR 随输入频率上升而下降

    如前所述,限制 ADC SNR 的另一个主要因素是 ADC 的热噪声,其不随输入频率变化。一个 14 位管线式转换器一般有 ~70 到 74 dB 的热噪声,如图 4 所示。我们可以在产品说明书中找到 ADC 的热噪声,其相当于最低指定输入频率(本例中为 10MHz)的 SNR,其中时钟抖动还不是一个因素。

    让我们来对一个具有 400 fs 抖动时钟电路和 ~73 dB 热噪声的 14 位 ADC 进行分析。低输入频率(例如:10MHz 等)下,该 ADC 的 SNR 主要由其热噪声定义。由于输入频率增加,400-fs 时钟抖动越来越占据主导,直到 ~300 MHz 时完全接管。尽管相比 10MHz 的 SNR,100MHz 输入频率下时钟抖动带来的 SNR 每十倍频降低 20dB,但是总 SNR 仅降低 ~3.5 dB(降至 69.5dB),因为存在 73-dB 热噪声(请参见图 5):

    3.jpg

    图 5 产生的 ADC SNR 受热噪声和时钟抖动的限制

    4.jpg

    现在,很明显,如果 ADC 的热噪声增加,对高输入频率采样时时钟抖动便非常重要。例如,一个 16 位 ADC 具有 ~77 到 80 dB 的热噪声层。根据图 4 所示曲线图,为了最小化 100MHz 输入频率 SNR 的时钟抖动影响,时钟抖动需为大约 150 fs 或更高。

    确定采样时钟抖动

    如前所述,采样时钟抖动由时钟的计时不准(相位噪声)和 ADC 的窗口抖动组成。这两个部分结合组成如下:

    5.jpg

    我们在产品说明书中可以找到 ADC 的孔径口抖动 (aperture jitter)。这一值一般与时钟振幅或转换速率一起指定,记住这一点很重要。低时钟振幅带来低转换速率,从而增加窗口抖动。

    时钟输入抖动

    时钟链(振荡器、时钟缓冲器或 PLL)中器件的输出抖动一般规定在某个频率范围内,该频率通常偏离于基本时钟频率 10 kHz 到 20 MHz(单位也可以是微微秒或者绘制成相位噪声图),可以将其整合到一起获取抖动信息。但是,低端的 10kHz 和高端的 20MHz 有时并非正确的使用边界,因为它们调试依赖于其他系统参数,我们将在后面进行详细介绍。图 6 描述了设置正确整合限制的重要性。

    6.jpg

    图 6 每十倍频计算得到的时钟相位噪声抖动影响

    图中的相位噪声图以其每十倍频抖动内容覆盖。我们可以看到,如果将下限设定为 100-Hz 或 10kHz 偏移,则产生的抖动便极为不同。同样地,例如,设置上整合限制为 10 或 20MHz,可得到相比 100MHz 设置极为不同的结果。

    确定正确的整合下限

    在采样过程中,输入信号与采样时钟信号混频在一起,包括其相位噪声。当进行输入信号 FFT 分析时,主 FFT 容器 (bin) 集中于输入信号。采样信号周围的相位噪声(来自时钟或输入信号)决定了邻近主容器的一些容器的振幅,如图 7 所示。

    1.jpg

    图 7 近区相位噪声决定主容器附近 FFT 容器的振幅

    因此,小于 1/2 容器尺寸的偏频的所有相位噪声都集中于输入信号容器中,且未增加噪声。因此,相位噪声整合带宽下限应设定为 1/2 FFT 容器尺寸。 FFT 容器尺寸计算方法如下:

    为了进一步描述该点,我们利用两个不同的FFT尺寸—131,072 和 1,048,576 点,使用 ADS54RF63 进行实验。采样速率设定为 122.88MSPS,而图 8 则显示了时钟相位噪声。

[1] [2]  下一页


本文关键字:如何  变换电路单元电路 - 变换电路

《如何准确地估算采样时钟抖动介绍》相关文章>>>