您当前的位置:五五电子网电子知识单元电路接口电路具有较大信号输出的硅应变计与模数转换器(ADC)的接口的实现 正文
具有较大信号输出的硅应变计与模数转换器(ADC)的接口的实现

具有较大信号输出的硅应变计与模数转换器(ADC)的接口的实现

点击数:7495 次   录入时间:03-04 12:00:56   整理:http://www.55dianzi.com   接口电路

    电阻电桥基础

ee68.gif

图1. 基本惠斯通电桥框图

    式1: Vo = Ve(R2/(R1 + R2) - R3/(R3 + R4))

    式1看起来比较复杂,但对于大部分电桥应用可以简化。当Vo+和Vo-等于Ve的1/2时,电桥输出对电阻的改变非常敏感。所有四个电阻采用同样的标称值R,可以大大简化上述公式。待测量引起的阻值变化由R的增量或dR表示。带dR项的电阻称为“有源”电阻。在下面四种情况下,所有电阻具有同样的标称值R,1个、2个或4个电阻为有源电阻或带有dR项的电阻。推导这些公式时,dR假定为正值。如果实际阻值减小,则用-dR表示。在下列特殊情况下,所有有源电阻具有相同的dR值。

    四个有源元件

    第一种情况是所有四个电桥电阻都是有源元件,R2和R4的阻值随着待测量的增大而增大,R1和R3的阻值则相应减小。这种情况常见于采用四个应变计的压力检测。施加压力时,应变计的物理方向决定数值的增加或减少,式2给出了这种配置下可以得到的输出电压(Vo)与电阻变化量(dR)的关系,呈线性关系。这种配置能够提供最大的输出信号,值得注意的是:输出电压不仅与dR呈线性关系,还与dR/R呈线性关系。这一细微的差别非常重要,因为大部分传感器单元的电阻变化与电阻的体积成正比。

    式2: Vo = Ve(dR/R)带四个有源元件的电桥



www.55dianzi.com

    一个有源元件

    第二种情况仅采用一个有源元件(式3),当成本或布线比信号幅度更重要时,通常采用这种方式。

    式3:Vo = Ve(dR/(4R+2dR))带一个有源元件的电桥

    正如所料,带一个有源元件的电桥输出信号幅度只有带四个有源元件的电桥输出幅度的1/4。这种配置的关键是在分母中出现了dR项,所以会导致非线性输出。这种非线性很小而且可以预测,必要时可以通过软件校准。

    两个具有相反响应特性的有源元件

    第三种情况如式4所示,包含两个有源元件,但阻值变化特性相反(dR和-dR)。两个电阻放置在电桥的同一侧(R1和R2,或R3和R4)。正如所料,此时的灵敏度是单有源元件电桥的两倍,是四有源元件电桥的一半。这种配置下,输出是dR和dR/R的线性函数,分母中没有dR项。

    式4:Vo = Ve(dR/(2R))具有相反响应特性的两个有源元件

    在上述第二种和第三种情况下,只有一半电桥处于有效的工作状态。另一半仅仅提供基准电压,电压值为Ve电压的一半。因此,四个电阻实际上并一定具有相同的标称值。重要的是电桥左侧的两个电阻间匹配以及电桥右侧的两个电阻间匹配。

    两个相同的有源元件

    第四种情况同样采用两个有源元件,但这两个元件具有相同的响应特性,它们的阻值同时增大或减小。为了有效工作,这些电阻必须位于电桥的对角位置(R1和R3,或R2和R4)。这种配置的明显优势是将同样类型的有源元件用在两个位置,缺点是存在非线性输出,式5中的分母中含有dR项。

    式5:Vo = Ve(dR/(2R+dR)在电压驱动的电桥中有两个相同的有源元件

    这个非线性是可以预测的,而且,可以通过软件或通过电流源(而不是电压源)驱动电桥来消除非线性特性。式6中,Ie是激励电流,值得注意的是:式6中的Vo仅仅是dR的函数,而不是上面提到的与dR/R成比例。

    式6: Vo = Ie(dR/2)在电流驱动的电桥中有两个相同的有源元件

    了解上述四种不同检测元件配置下的结构非常重要。但很多时候传感器内部可能存在配置未知的电桥。这种情况下,了解具体的配置不是很重要。制造商会提供相关信息,比如灵敏度的线性误差、共模电压等。为什么将电桥作为首选方案?通过下面的例子可以很容易地回答这个问题。

    测压元件

    电阻桥的一个常用例子是带有四个有源元件的测压单元。四个应力计按照电桥方式配置并固定在一个刚性结构上,在该结构上施加压力时会发生轻微变形。有负荷时,两个应力计的值会增加,而另外两个应力计的值会减小。这个阻值的改变很小,在1V激励电压下,测压单元的满幅输出是2mV。从式2我们可以看出相当于阻值满幅变化的0.2%。如果测压单元的输出要求12位的测量精度,则必须能够精确检测到1/2ppm的阻值变化。直接测量1/2ppm变化阻值需要21位的ADC。除了需要高精度的ADC,ADC的基准还要非常稳定,它随温度的改变不能够超过1/2ppm。这两个原因是驱动使用电桥结构的主要原因,但驱动电桥的使用还有一个更重要的原因。

    测压单元的电阻不仅仅会对施加的压力产生响应,固定测压元件装置的热膨胀和压力计材料本身的TCR都会引起阻值变化。这些不可预测的阻值变化因素可能会比实际压力引起的阻值变化更大。但是,如果这些不可预测的变化量同样发生在所有电桥电阻上,它们的影响就可以忽略或消除。例如,如果不可预测变化量为200ppm,相当于满幅的10%。式2中,200ppm的阻值R的变化对于12位测量来说低于1个LSB。很多情况下,阻值dR的变化与R的变化成正比。即dR/R的比值保持不变,因此R值的200ppm变化不会产生影响。R值可以加倍,但输出电压不受影响,因为dR也会加倍。

    上述例子表明采用电桥可以简化电阻值微小改变时的测量工作。以下讲述电桥测量电路的主要考虑因素。

    电桥电路的五个关键因素

    在测量低输出信号的电桥时,需要考虑很多因素。其中最主要的五个因素是:

    激励电压

    共模电压

    失调电压

    失调漂移

   



www.55dianzi.com

    噪声

    激励电压

    式1表明任何桥路的输出都直接与其供电电压成正比。因此,电路必须在测量期间保持桥路的供电电压恒定(稳压精度与测量精度相一致),必须能够补偿电源电压的变化。补偿供电电压变化的最简单方法是从电桥激励获取ADC的基准电压。图2中,ADC的基准电压由桥路电源分压后得到。这会抑制电源电压的变化,因为ADC的电压分辨率会随着电桥的灵敏度而改变。

ee69.gif

    图2. 与Ve成比例的ADC基准电压。可以消除由于Ve变化而引起的增益误差

    另外一种方法是使用ADC的一个额外通道测量电桥的供电电压,通过软件补偿电桥电压的变化。式7所示为修正后的输出电压(VOC),它是测量输出电压(Vom)、测量的激励电压(Vem)以及校准时激励电压(Veo)的函数。

    式7: Voc = VomVeo/Vem

    共模电压

    电桥电路的一个缺点是它的输出是差分信号和电压等于电源电压一半的共模电压。通常,差分信号在进入ADC前必须经过电平转换,使其成为以地为参考的信号。如果这一步是必须的,则需注意系统的共模抑制比以及共模电压受Ve变化的影响。对于上述测压单元的例子,如果用仪表放大器将电桥的差分信号转换为单端信号,需要考虑Ve变化的影响。如果Ve容许的变化范围是2%,电桥输出端的共模电压将改变Ve的1%。如果共模电压偏差限定在精度指标的1/4,那么放大器的共模抑制必须等于或高于98.3dB。(20log[0.01Ve/(0.002Ve/(40964))] = 98.27)。这样的指标虽然可以实现,但却超出了很多低成本或分立式仪表放大器的能力范围。

    失调电压

    电桥和测量设备的失调电压会将实际信号拉高或拉低。只要信号保持在有效测量范围,对这些漂移的校准将很容易。如果电桥差分信号转换为以地为参考的信号,电桥和放大器的失调很容易产生低于地电位的输出。这种情况发生时,将会产生一个死点。在电桥输出变为正信号并足以抵消系统的负失调电压之前,ADC输出保持在零电位。为了防止出现这种情况,电路内部必须提供一个正偏置。该偏置电压保证即使电桥和设备出现负失调电压时,输出也在有效范围内。偏置带来的一个问题是降低了动态范围。如果系统不能接受这一缺点,可能需要更高质量的元件或失调调节措施。失调调整可以通过机械电位器、数字电位器,或在ADC的GPIO外接电阻实现。

    失调漂移

    失调漂移和噪声是电桥电路需要解决的重要问题。上述测压单元中,电桥的满幅输出是2mV/V,要求精度是12位。如果测压单元的供电电压是5V,则满幅输出为10mV,测量精度必须是2.5&mICro;V或更高。简而言之,一个只有2.5µV的失调漂移会引起12位转换器的1 LSB误差。对于传统运放,实现这个指标存在很大的挑战性。比如OP07,其最大失调TC为1.3µV/°C,最大长期漂移是每月1.5µV。为了维持电桥所需的低失调漂移,需要一些有效的失调调整。可以通过硬件、软件或两者结合实现调整。

[1] [2] [3]  下一页


本文关键字:转换器  接口  接口电路单元电路 - 接口电路

《具有较大信号输出的硅应变计与模数转换器(ADC)的接口的实现》相关文章>>>