您当前的位置:五五电子网电子知识单元电路运算放大器驱动单极性精密ADC的单/双通道放大器配置分析 正文
驱动单极性精密ADC的单/双通道放大器配置分析

驱动单极性精密ADC的单/双通道放大器配置分析

点击数:7973 次   录入时间:03-04 11:33:32   整理:http://www.55dianzi.com   运算放大器

    传感器输出与ADC接口的最常见问题之一是:如何让X V到Y V的信号范围适应ADC的输入范围。 本文介绍多种不同的配置,其利用单通道或双通道运算放大器来缩放信号并进行电平转换,以使单极性ADC的范围最大。 通常,无论单端还是差分,单极性ADC的输入范围都是从地到VREF电压。 本文还会介绍常见全差分放大器(FDA)配置。

    对于给定功率水平,FDA可实现最佳性能,但合适的FDA并不是总能找到。不过,单通道和双通道运算放大器的选择范围更广,可用来构建定制前端。 本文旨在介绍不同的配置,讨论各种配置的用法和利弊,但并不涉及选择适当的放大器及周边无源元件等细节,因为后者须视具体情况而定。

    单端/伪差分输入ADC

    单端/伪差分ADC常常是低分辨率或低性能转换器,提供简单的低功耗信号链,只有一条信号路径。 但是,它并不具备差分输入的噪声抑制能力或额外信号摆幅。

    单位增益驱动器

    这是一种纯粹的ADC驱动功能,无信号调理。 当前一级的驱动能力不够时,它为ADC提供高输入阻抗。 这种配置的噪声和功耗最低,因为没有附加电阻。 在单电源应用中,信号摆幅可能会受输入或输出放大器裕量要求的限制。 对于差分输入,可利用两个单位增益驱动器来实现高阻抗输入,参见CN0307。

1.jpg

2.jpg

    同相配置

    允许给输入信号增加增益。 应注意,增加增益引起的放大器带宽降低并不影响驱动ADC输入。 这对所有配置都是如此。 实例参见CN0042。

3.jpg

    带衰减/增益和电平转换的反相配置(+/-5/10V输入)

    通过R2/R1衰减,支持输入电压范围超出放大器电源电压。 这可以用于标准工业+/-10V IO。 放大器输入共模电压由R3/R4分压器从基准电压获得。 设置适当的R3/R4比值,以将信号电平转换到ADC共模电压Vref/2。 常见比值参见下表。 ADC输入端出现的信号反相,这可以通过数字方式来纠正。 实例参见CN0194/CN0254。

4.jpg

    全差分输入ADC

    全差分输入ADC提供更高的分辨率和性能,但信号链也更为复杂,功耗会增加。 差分信号链提供更好的噪声抑制能力和更大的信号摆幅(为单端ADC的两倍)。 多数差分单极性ADC要求将输入共模设置为Vref/2,以使信号摆幅最大。 这可能需要对输入信号进行电平转换。

    单端至差分转换

    这是差分ADC需要使用的最常见配置之一,因为传感器输出是单端信号,或者前一级是仪表放大器。 以下配置显示了执行单端差分转换的不同方法及其利弊。

    高阻抗情况下的单端差分转换

    此电路可在需要高输入阻抗的情况下执行单端差分转换,但裕量要求会提高。 该配置中,R1=R2,R3=R4,Vsig范围是0-Vref。 将R1连接到Vsig而不是第一个放大器的输出端,可以降低噪声,并使IN+与IN-之间的相位延迟匹配得更好。 其代价是R1值会设置一个阻性输入。

5.jpg

    单电源情况下的单端差分转换

    对于单电源,可以利用轨到轨输出(RRO)放大器实现单端差分转换,对裕量的影响极小。 其代价是阻性输入。 该配置中,R1=R2,R3=R4,R5=R6,输入范围是0-Vref。

6.jpg



www.55dianzi.com

    这是一款常用配置,可用来扩展输入范围,尤其是+/-10V工业IO。 放大器可采用电压较低的单电源,因为输入共模电压由R5/R6和R7/R8固定。 在此配置中,R7=R8且R3=R4。 R1/R2和R5/R6可根据输入范围和电平转换要求进行设置。 其典型比率如下表所示,但可灵活匹配各种输入范围。 使用AD7984的示例可参见CN0033。

1.jpg

    利与弊

2.jpg

    采用FDA方法实现单端转差分

    用这种方法实现的单端转差分具有最低的噪声,适合单电源类应用,可耐受阻性输入。 有关采用FDA的设计详情可参见应用笔记AN-1026:高速差分ADC驱动器设计考虑因素。 就噪声性能而言,似乎显然应该采用这种方法;然而,有些时候可能并不存在合适的FDA,而使用双放大器的定制电路可能更为合适。 就单个放大器而言,可选产品种类要多得多。 示例可参见CN0040/CN0105。

3.jpg

    差分至差分驱动

    如果输入信号是差分的,那么万一所选FDA受到限制,则使用双放大器可增加产品选择数量。 若输入同时也是全差分的,则相比任意双放大器选项,FDA可能具有更低的输出噪声和功耗;但是,在有源滤波器应用中,双放大器可能更为稳定,并因为更广泛的分类产品而获得更多的灵活性(FET输入、超精度、RRIO等)。

    差动放大器

    本配置提供带增益的高输入阻抗;然而,输入共模固定为Vref/2的ADC共模。从Vref/2开始的任意输入共模变化都会导致ADC输入共模的偏移,同时降低性能和信号摆幅。 示例参见CN0216。 该配置用来测量电桥(比如电子秤和称重传感器等)时非常有用。

4.jpg

    提供电平转换的差分转差分

    该配置采用两个放大器,将一个输入信号电平转换至Vref/2的ADC共模电压。在此配置中,R1=R3,R2=R4,并且可针对增益或衰减配置。 R5和R6之比用来将信号电平转换至所需范围。 任意输入共模变化都会导致ADC输入共模的偏移,同时降低性能和信号摆幅。

5.jpg

    采用FDA实现差分转差分

针对特定应用,如果可以找到合适的FDA,则采用该配置可获得最佳噪声性能。 可方便地进行电平转换,但以阻性输入为代价。 反相配置允许单电源/轨到轨供电。 如需更多详情,可参考前文提及的应用笔记AN-1026:高速差分ADC驱动器设计考虑因素。示例参见CN0237。
6.jpg




本文关键字:放大器  通道  精密  运算放大器单元电路 - 运算放大器

《驱动单极性精密ADC的单/双通道放大器配置分析》相关文章>>>