您当前的位置:五五电子网电子知识电子知识资料科研成果复位设计中的结构性缺陷及解决方案探讨 正文
复位设计中的结构性缺陷及解决方案探讨

复位设计中的结构性缺陷及解决方案探讨

点击数:7713 次   录入时间:03-04 11:43:36   整理:http://www.55dianzi.com   科研成果

    4. 解决方案

    * 在合成过程中在复位路径保留多路复用结构,因为多路复用结构与其他组合逻辑相比易于产生干扰。MUX Pragma可以在编码RTL时使用,这将有助于合成工具在复位路径中保留任何多路复用器。

    设计中的同步复位问题

    1. 问题(I)

    在许多地方,设计人员在时钟方面喜欢同步复位设计。原因可能是为了节省一些芯片面积(带有异步复位输入的触发器比任何不可复位触发器都大)或让系统与时钟完全同步,也可能有一些其他原因。对于此类设计,当复位源被断言时需要向设计的触发器提供时钟,否则,这些触发器可能会在一段时间内都不进行初始化。但当该模块被插入一个系统时,系统设计人员可能选择在复位阶段禁用其时钟(如果在一开始不需要激活该模块),以节省整个系统的动态功耗。因此,该模块甚至在复位去断言后一段时间内都不进行初始化。如果该模块的任何输出直接在系统中使用,那么将捕获未初始化和未知的值(X),这可能会导致系统功能故障。

     

    图9:同步复位问题时序图

    2. 解决方案

    在复位阶段启用该模块的时钟且持续最短的时间,使该模块内的所有触发器都在复位过程中被初始化。 当系统复位被去断言时,模块输出不会有任何未初始化的值。     

    图10:同步复位问题已解决

    3. 问题(II)

    在时钟域交叉路径使用两个触发同步器是常见做法。然而,有时设计人员对这些触发器使用同步复位。相同的RTL代码是

    always @(posedge clk )

    if(!sync_rst_b) begin

    sync1 <= 1'b0; sync2 <= 1'b0 ;

    end

    else begin

    sync1 <= async_in; sync2 <= sync1

    end

    在硬件中进行了RTL合成后,上面的代码会在双触发器同步器的同步链中引入组合逻辑,这会带来风险,并缩短sync2触发器输入进入亚稳态的时间。     

    图11:同步复位问题2

    2. 解决方案

    可用以下方式编写RTL代码,以避免同步链的组合逻辑。

    always @(posedge clk )

    if(!sync_rst_b) begin

    sync1 <= 1'b0;

    end

    else begin

    sync1 <= async_in; sync2 <= sync1

    end

    在上面的代码中,对sync2触发器不使用复位,因此在同步链中不会实现组合信元。然而,需要注意sync2需要一个额外的周期才能复位,这不应导致设计出现任何问题。

    冗余复位同步器引起的问题

    1. 问题

    在使用多个异步时钟的设计中,设计人员需要确保在目标寄存器使用的时钟方面,异步复位的同步去断言,否则可能导致目标触发器发生时序违反,从而产生亚稳态。复位同步器被用来复位去断言,与目标时钟域同步。然而,只有在系统复位去断言过程中有目标时钟时才会发生复位去断言时序违反。如果在复位去断言时没有时钟,那么便不会有任何时序违反。因此,在设计多时钟域模块时,设计人员可以让编译时间选项绕过该模块中的那些复位同步器,并让系统集成商根据对该模块的时钟可用性决定是否需要使用复位同步器。

    此外,如果系统时钟和异步时钟比非常高,冗余同步器甚至会造成设计功能性问题。下面描述了这个问题。     

    图12:冗余同步器的问题

    在上面的设计中,去断言与sys clk同步的系统复位被馈送到(mod_clk域)的复位同步器,然后在mod_clk域逻辑中使用该复位。让我们假定sys clk : mod_clk的时钟频率比大于6:1.默认不启用mod_clk,以节省动态功率。当用户想要启用mod_clk域逻辑的功能时,便启用该时钟。在启用了该时钟后,有两个mod_clk周期的延迟,其中,由于复位同步器导致整个mod_clk域逻辑都处于复位状态。在该阶段,如果一些数据交易从sys clk域开始,将在mod_clk域丢失。

    2. 解决方案

    虽然这不是大问题,但有时会在客户一端造成混淆,因为该延迟对客户不可见。 因此消除混淆的更好的方式是:

    * 如果在全局复位去断言过程中没有时钟,则在设计中绕过/删除冗余复位同步器。 这当然会节省一定的门控数。

    * 如果动态功耗不是问题,用户可以在mod_clk域逻辑开始运作之前很长时间在启动代码选择启用mod_clk. 因此,复位去断言将有足够的时间传播。

    * 这也可以在软件中处理,在任何有效操作之前启用了mod_clk后,设置两三个mod_clk周期的延迟。

    由于罕见的时钟路径导致复位去断言时序问题

    1. 问题

    设计的复位架构根据系统而不同。在一些安全关键设备中,整个复位状态机在安全时钟上工作,安全时钟默认启用。 该时钟也被用作设备的默认系统时钟。     

    图13:罕见时钟路径的问题

    在上图中,复位状态机(R触发器)在default_clk上工作。此外,在复位去断言过程中,default_clk是sys clk的源。因此,在逻辑上,这两个时钟(clk1和clk2)在复位去断言过程中同步。但是,由于clk1和clk2之间存在巨大的罕见路径,因此很难平衡这两个时钟并视其为同步。 因此,满足A触发器的复位去断言变得具有挑战性。

    2. 解决方案

    异步对待clk1和clk2,并在A触发器中使用复位之前放置复位同步器。现在需要从S2-->A满足复位去断言时序(见图14)。这不应是个问题。     

    图14:解决方案

    结束语

    这部分主要专注于复位设计中的故障以及克服这些问题的可能的解决方案。然而,上述解决方案并非唯一的解决方案,也不普遍适用于所有设计。这些是一些通用的解决方案和建议的指导方针,在特殊情况下可能需要进行修改。在这些情况下,此类问题不仅导致功能故障,还会增加一些额外的调试时间和工作,从而增加执行周期时间。因此,设计人员需要在设计的早期阶段考虑此类问题。



上一页  [1] [2] 


本文关键字:解决方案  结构性  科研成果电子知识资料 - 科研成果

《复位设计中的结构性缺陷及解决方案探讨》相关文章>>>