您当前的位置:五五电子网电子知识电源动力技术调稳压-升降压技术低压差稳压器(LDO)应用分析 正文
低压差稳压器(LDO)应用分析

低压差稳压器(LDO)应用分析

点击数:7167 次   录入时间:03-04 11:47:04   整理:http://www.55dianzi.com   调稳压-升降压技术

    低压差稳压器(LDO)能够在很宽的负载电流和输入电压范围内保持规定的输出电压,而且输入和输出电压之差可以很小。这个电压差被称为压降或裕量要求,在负载电流为2A时可以低至80mV。可调输出低压差稳压器1于1977年首次推出。现在,便携设备需要使用的低压差线性稳压器经常多达20个。最新便携设备中的许多LDO被集成进了多功能电源管理芯片2(PMIC)——这是高度集成的系统,拥有20个或以上的电源域,分别用于音频、电池充电、设备管理、照明、通信和其它功能。

    然而,随着便携系统的快速发展,集成式PMIC已经无法满足外设电源要求。在系统开发的后期阶段必须增加专用LDO来给各种选件供电,如相机模块、蓝牙、WiFi和其它连接模块。LDO还能用来辅助降低噪声,解决由电磁干扰(EMI)和印刷电路板(PCB)布线造成的稳压问题,并通过关闭不需要的功能来提高系统效率。

    本文将讨论基本的LDO拓扑,解释关键的性能指标,并展示低压差稳压器在系统中的应用。同时使用ADI公司LDO产品系列3的设计特征进行示例说明。

采用低压差技术稳定输出电压的LDO框图

    图1:采用低压差 (Vout和在额定负载电流时Vin的最低给定值之间的差值) 技术稳定输出电压的LDO框图。

    基本的LDO架构4。LDO由参考电压、误差放大器、反馈分压器和传输晶体管组成,如图1所示。输出电流通过传输器件提供。传输器件的栅极电压由误差放大器控制——误差放大器将参考电压和反馈电压进行比较,然后放大两者的差值以便减小误差电压。如果反馈电压低于参考电压,传输晶体管的栅极电压将被拉低,允许更多的电流通过,进而提高输出电压。如果反馈电压高于参考电压,传输晶体管的栅极电压将被拉高,进而限制电流流动、降低输出电压。

    这种闭环系统的动态特性基于两个主要的极点,一个是由误差放大器/传输晶体管组成的内部极点,另一个是由放大器的输出阻抗和输出电容的等效串联电阻(ESR)组成的外部极点。输出电容及其ESR将影响环路稳定性和对负载电流瞬态变化的响应性能。为了确保稳定性,推荐1Ω或以下的ESR值。另外,LDO要求使用输入和输出电容来滤除噪声和控制负载瞬态变化。电容值越大,LDO的瞬态响应性能越好,但会延长启动时间。ADI公司的LDO在使用规定电容时可以在规定工作条件下达到很好的稳定性能。

    LDO效率:提高效率一直是设计工程师的永恒追求,而提高效率的途径是降低静态电流(Iq)和前向压降。eq 1

    由于Iq在分母上,因此很明显Iq越高效率就越低。如今的LDO具有相当低的Iq。当Iq远小于ILOAD时,在效率计算公式中可以忽略Iq。这样,LDO的效率公式可以简化为(Vo/Vin)*100%。由于LDO无法存储大量的未使用能量,没有提供给负载的功率将在LDO中以热量形式消耗掉。

eq 2

    LDO可以提供稳定的电源电压,这种电压与负载和线路变化、环境温度变化和时间流逝无关,并且当电源电压和负载电压之间的压差很小时具有最高的效率。例如,随着锂离子电池从4.2V(满充状态)下降到3.0V(放电后状态),与该电池连接的2.8V LDO将在负载处保持恒定的2.8V(压差小于200mV),但效率将从电池满充时的67%增加到电池放电后的93%。

    为了提高效率,LDO可以连接到由高效率开关稳压器产生的中间电压轨,例如使用3.3V开关稳压器。LDO效率固定为85%,假设开关稳压器效率为95%,那么系统总效率将是81%。

    电路特性增强LDO性能: 使能输入端允许通过外部电路控制LDO的启动和关闭,并允许在多电压轨系统中按正确的顺序加电。软启动可以在上电期间限制浪涌电流和控制输出电压上升时间。睡眠状态能使漏电流最小,这个特性在电池供电系统中特别有用,并且允许快速启动。当LDO的温度超过规定值时,热关断电路将关闭LDO。过流保护电路可以限制LDO的输出电流和功耗。欠压闭锁电路可以在供电电压低于规定的最小值时禁止输出。图2是用于便携设计的典型电源系统简图。

便携系统中的典型电源域

    图2:便携系统中的典型电源域。



www.55dianzi.com

    理解线性稳压器要求

    LDO用于数字负载:像ADP170和ADP1706这类数字线性稳压器设计用于支持系统的主要数字要求,通常是微处理器内核和系统输入/输出(I/O)电路。用于DSP和微控制器的LDO必须具有较高的效率,并能处理快速变化的大电流。更新的应用要求给数字LDO造成了巨大的压力,因为处理器内核为了节能而经常改变时钟频率。为了响应软件导致的负载变化而发生的时钟频率变化对LDO的负载调整功能提出了严格的要求。

    数字负载的重要特征有线路调整率和负载调整率,以及瞬态下冲和过冲。在给低电压的微处理器内核供电时,精确的输出控制总是非常重要,没有足够的调整率将致使内核闭锁。数据手册中并不总是提供上述参数,瞬态响应图形也许表现出对瞬态信号不错的上升和下降响应速度。线路和负载调整率有两种方式表述:一种是输出电压随负载变化的偏离百分比,实际的V/I值,或者在规定负载电流条件下同时用两者表示。

    为了节省功耗,数字LDO需要具有较低的Iq以延长电池寿命。便携系统有很长时间软件处于空闲状态,这段时间系统处于低功耗状态。在不活动时,系统将进入睡眠状态——要求LDO关闭,消耗电流不到1 &mICro;A。当LDO处于睡眠模式时,所有电路(包括带隙参考)都将被关闭。当系统回到活动模式时,要求快速启动 ——在此期间数字供电电压必须不产生过高的过冲。过高的过冲将导致系统闭锁,有时需要拔出电池或按下主复位按钮才能解决问题,并重启系统。

    LDO用于模拟和射频负载: 像ADP121和ADP130具有的低噪声和高电源抑制(PSR)性能对模拟环境中使用的LDO来说非常重要,因为模拟器件比数字器件对噪声更敏感。模拟LDO需求的主要来自无线接口要求——不损伤接收器或发送器,并在音频系统中不产生爆破音或嗡嗡声。无线连接非常容易受噪声的影响,如果噪声干扰到信号,接收器的效果将大打折扣。在考虑模拟线性稳压器时,器件要能抑制来自上游电源和下游负载的噪声,而且自身不增加噪声,这一点很重要。

    模拟稳压器噪声的测量值用电压有效值(rms)和PSR表示,后者代表了抑制上游噪声的能力。增加额外的滤波器或旁路电容可以减小噪声,但增加了成本和体积。仔细和灵活的LDO内部设计也有助于噪声降低和电源噪声抑制。在选择LDO时,对涉及每个系统所需的总体性能的产品细节进行检查很重要。

    关键的LDO指标和定义

    备注:制造商数据手册首页一般是一些摘要信息,通常突出了一些吸引人的器件特性。关键参数经常强调典型的性能特征,但只有查阅了文档中的完整指标和其它数据后才能得到更完整的理解。另外,由于制造商提供指标的方式几乎没有标准可言,因此电源设计师需要理解用来获得电气指标表格中列出的关键参数的定义和方法。系统设计师应该密切关注关键参数,如环境和结点温度范围、图形信息中的X-Y刻度值 、负载、瞬态信号的上升和下降时间以及带宽。下面讨论与ADI公司LDO的表征和应用有关的一些重要参数。

    输入电压范围:LDO的输入电压范围决定了最低的可用输入电源电压。指标可能提供宽的输入电压范围,但最低输入电压必须超过压降加上想要的输出电压值。例如,150mV的压降对于稳定的2.8V输出来说意味着输入电压必须大于2.95V。如果输入电压低于2.95V,输出电压将低于2.8V。

    接地(静态)电流:静态电流Iq就是输入电流IIN和负载电流IOUT之间的差值,在规定的负载电流条件下测量。对于固定电压稳压器,Iq等于接地电流Ig。对于可调稳压器,如ADP1715,静态电流等于接地电流减去来自外部分压电阻网络中的电流。

    关断电流:这是指设备禁用时LDO消耗的输入电流,对便携LDO来说通常低于1.0 µA。这个指标对于便携设备关机时长待机期间的电池寿命来说很重要。

    输出电压精度:ADI公司的LDO具有很高的输出电压精度,在工厂制造时就被精确调整到±1%之内(25℃)。输出电压精度在工作温度、输入电压和负载电流范围条件下加以规定。误差规定为±x%最差情况。

    线路调整率:线路调整率是指输出电压随输入电压变化而发生的变化率。为了避免由于芯片温度变化引起的误差,线路调整率的测量通常在低功耗状态或使用脉冲技术进行。

    动态负载调整率:只要负载电流缓慢变化,大多数LDO都能轻松地保持输出电压接近恒定不变。然而,当负载电流快速改变时,输出电压也将发生改变。当负载电流发生变化时输出电压会改变多少就决定了负载瞬态性能。

[1] [2]  下一页


本文关键字:稳压器  调稳压-升降压技术电源动力技术 - 调稳压-升降压技术