Dothan处理器其瞬间最大功耗约为37W,AMD Athlon处理器其瞬间最大功耗约为35W至40W,Intel下一代Merom处理器的瞬间最大功耗将高达50W。CPU是计算机中温度检测的重要目标。目前,无论是Intel或AMD的CPU,CPU内部都含有提供远程温度检测用的二极管,以提供温度 传感器 ,直接检测CPU内部管芯的温度,并对其进行精确的温度控制。
图形处理芯片 (GPU) 是除了CPU之外,系统中的另一个重要的热源。由于液晶显示器分辨率的增高,图形处理芯片的数据处理量也大大增加,为了让图形处理芯片可靠工作,目前普遍使用的图形处理芯片,也和CPU一样,均内含提供远程温度检测的二极管,以便直接检测图形处理芯片内部管芯的温度,并对其进行温度控制。笔记本电脑中,其它可能需要进行温度检测及控制的组件还包括DDR内存、硬盘和光驱。温度检测的目地是让笔记本电脑的嵌入式微控制器能对笔记本电脑作适当的电源管理及热管理。精确可靠的温度检测在笔记本电脑的应用上具有下列优点:
一. 精确的温度检测能让系统发挥最高的效能:当组件实际温度并未到达系统降频的临界点时,因为温度传感器检测误差,可能使系统降频动作提早发生,这会使系统无法发挥最大的效能。
二. 精确的温度检测能降低系统噪音并延长计算机电池使用时间:如果温度传感器的检测温度高于系统实际温度,将造成风扇提早运转,或风扇转速比实际需求高,这将造成系统不必要的风扇噪音及功耗。
三. 精确的温度检测能提高系统稳定性,增加产品竞争力:如果温度传感器的检测温度低于系统实际温度,可能在系统实际温度已到达降频临界点时系统仍然保持较高的工作频率,从而造成系统瘫痪甚至损坏。此外,精确的温度检测允许系统使用最小的散热模块,如此可以降低散热模块成本,增加产品竞争力。
笔记本电脑常用的温度传感器
热敏电阻和集成温度传感器是笔记本电脑常用的两种温度传感器,以下我们将探讨这两种温度传感器的工作原理及使用。
热敏电阻
热敏电阻按温度对电阻特性变化一般可分为正温度系数热敏电阻、负温度系数热敏电阻及临界温度系数热敏电阻。正温度系数热敏电阻及临界温度系数热敏电阻的电阻特性会在特定温度发生急剧变化,适合用于定温度检测或限制在较小的温度范围内。负温度系数热敏电阻主要为氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物的复合烧结体,这些金属氧化物材料都具有半导体性质,当温度较低时,半导体内的电子-空穴对儿数目较少,因此电阻较高。当温度升高时,热敏电阻内的电子-空穴对儿数量增加,因此导电率增加,电阻值下降。图2为典型负温度系数热敏电阻特性曲线,电阻和温度之间的关系式如下:
集成温度 传感器
集成温度传感器是目前笔记本电脑普遍采用的温度传感器,具有精确度高、响应速度快、体积小、功耗低、软件界面控制方便等优点。图4为典型集成温度传感器框图。温度检测的主要机制为集成温度传感器内部的电流源和ADC,集成温度传感器的工作原理是利用半导
体PN结正向压降在不同的温度下具有不同导通压降的特性进行温度测量的。由半导体PN结伏-安特性曲线:
ID:二极管的正向电流,IS:二极管的反向饱和电流,VD:二极管的正向压降。
n:二极管的理想因素(一般约为1),k:波尔兹曼常数 (1.38×10-23 joules/K)。
T:绝对温度K,q:一个电子的电荷 (1.6×10-19 C)
因为,因此我们可以将式 (2) 简化为
集成温度传感器内部的电流源会送出二个不同的电流,ADC在不同电流时读出不同的二极管正向压降。也就是当电流源送出高电流IDH时,ADC读数VDH。IDH和VDH的关系式为
当电流源送出低电流IDL时,ADC读数VDL。IDL和VDL的关系式为
将 (4) 式除以 (5) 式,可得到
将 (6) 式二边取对数并作整理,我们可以得到